
Studying the Fully Abstract Model of PCFwithin its Continuous Function Model 1Achim Jung2 and Allen Stoughton3Abstract. We give a concrete presentation of the inequationally fully abstract model of PCFas a continuous projection of the inductively reachable subalgebra of PCF's continuous functionmodel.1 IntroductionAs is well known, the continuous function model E of the applied typed lambda calculus PCF fails tobe inequationally fully abstract [Plo77], but PCF has a unique inequationally fully abstract, order-extensional model F [Mil77, Sto90], where models are required to interpret the ground type � as theat cpo of natural numbers. Two attempts at �nding connections between E and F have been madein the literature.Mulmuley's idea was to connect complete lattice versions of E and F [Mul87]. Using a syn-tactically de�ned inductive (inclusive) predicate, he de�nes an inequationally fully abstract, order-extensional model F 0 as the image of a continuous closure (retraction that is greater than the identityfunction) of the complete lattices version E 0 of the continuous function model. The use of completelattices is essential in this construction, and, e.g., parallel or is mapped to >. Very pleasingly, F 0inherits both its ordering relation and function application operation from E 0. Thus some of PCF'soperations must be sent by the closure to strictly greater functions. Although the closure isn't ahomomorphism between E 0 and F 0 (since it doesn't preserve application in general), it does preservethe meaning of terms. F 0 isn't a combinatory algebra, since all functions of F 0 preserve >, and thusthe usual axiom for the K combinator cannot hold. Finally, Mulmuley is able to recover F from F 0simply by removing > at all types.A more algebraic connection between E and F was subsequently developed by the second author[Sto88]. Here one begins by forming the inductively reachable subalgebra R(E) of E , which inthis case simply consists of those elements of E that are lub's of directed sets of denotable elements.R(E) is then continuously quotiented by a syntactically de�ned inductive pre-ordering, producing F .Furthermore, in contrast to the situation with E 0 and F 0 above, there is a continuous homomorphismfrom R(E) to F .1Appears in M. Bezem and J. F. Groote, editors, International Conference on Typed Lambda Calculi and Appli-cations, Lecture Notes in Computer Science, vol. 664, pp. 230{244, Springer-Verlag, 1993.2FachbereichMathematik, Technische Hochschule Darmstadt, Schlo�gartenstra�e 7, D-6100 Darmstadt, Germany,e-mail:jung@mathematik.th-darmstadt.de.3School of Cognitive and Computing Sciences, University of Sussex, Falmer, Brighton BN1 9QH, UK, e-mail:allen@cogs.sussex.ac.uk. 1



The purpose of this paper is to give a concrete presentation of this construction of F from R(E).We de�ne a model N (E) as the image of a syntactically de�ned continuous projection over R(E), andshow that N (E) is inequationally fully abstract and order-extensional, and is thus order-isomorphicto F . As in Mulmuley's construction, the ordering relation of N (E) is inherited from E (and R(E)).On the other hand we prove that the application operation of N (E) cannot be inherited from E .There is, of course, a continuous homomorphism from R(E) to N (E).In the �nal section of the paper, we consider the relationship between the full abstraction problem,lambda de�nability and our presentation of F , and propose a minimal condition that any \solution"to the full abstraction problem should satisfy.2 BackgroundThe reader is assumed to be familiar with such standard domain-theoretic concepts as (directed)complete partial orders (cpo's), (directed) continuous functions, and !-algebraic, strongly algebraic(SFP) and consistently complete cpo's.If X is a subset of a poset P , then we write FX and dX for the lub and glb, respectively, of Xin P , when they exist. We abbreviate Ffx; yg and dfx; yg to xty and xuy, respectively. We write!? for the at cpo of natural numbers. Given cpo's P and Q, we write P !c Q for the cpo of allcontinuous functions from P to Q, ordered pointwise. A cpo P is a subcpo of a cpo Q i� P � Q, vPis the restriction of vQ to P , ?P = ?Q and FP D = FQD for all directed D � P . A pre-ordering� over a cpo P is inductive i� vP � � and, whenever D is a directed set in hP;vP i and p is an ubof D in hP;�i, the lub of D in hP;vP i is � p.In the remainder of this section, we briey recall the de�nitions and results from [Sto88] thatwill be required in the sequel.The reader is assumed to be familiar with many-sorted signatures � over sets of sorts S, as wellas algebras over such signatures, i.e., �-algebras. Signatures are assumed to contain distinguishedconstants 
s at each sort s, which intuitively stand for divergence. Many operations and conceptsextend naturally from sets to S-indexed families of sets, in a pointwise manner. For example, if Aand B are S-indexed families of sets, then a function f :A!B is an S-indexed family of functionsfs:As!Bs. We will make use of this and other such extensions without explicit comment. We useuppercase script letters (A, B, etc.) to denote algebras and the corresponding italic letters (A, B,etc.) to stand for their carriers.We write T� (or just T ) for the initial (term) algebra, so that Ts is the set of terms of sort s.Given an algebra A and a term t of sort s, [[t]]A (or just [[t]]) is the meaning of t in As, i.e., the imageof t under the unique homomorphism from T to A. Sometimes we write tA (or even just t) for [[t]]A.An algebra is reachable i� all of its elements are denotable (de�nable) by terms. A pre-orderingover an algebra is substitutive i� it is respected by all of the operations of that algebra. Substitutiveequivalence relations are called congruences, as usual. The congruence over T that is induced by analgebra A is called �A: two terms are congruent when they are mapped to the same element of A.When we say that c[v1; : : : ; vn] is a derived operator of type s1 � � � � � sn! s0, this means that c isa context of sort s0 over context variables vi of sort si. We write cA for the corresponding derivedoperation over an algebra A.The reader is also assumed to be familiar with ordered algebras, i.e., algebras A whose carriersare S-indexed families of posets As = hAs;vsi with least elements ?s denoted by the 
s constants,2



and whose operations are monotone functions. Such an algebra is called complete when its carrieris a cpo and operations are continuous. A homomorphism over complete ordered algebras is calledcontinuous when it is continuous on the underlying cpo's. We write OT� (or just OT ) for the initialordered algebra, which consists of T with the \
-match" ordering: one term is less than anotherwhen the second can be formed by replacing occurrences of 
 in the �rst by terms. The substitutivepre-ordering over T that is induced by an ordered algebra A is called �A: one term is less thananother when the meaning of the �rst is less than that of the second in A.Given complete ordered algebras A and B, we say that A is an inductive subalgebra of B (writtenA � B) i� A is a subalgebra of B and A is a subcpo of B. Given a complete ordered algebra A, wewrite R(A) for the �-least inductive subalgebra of A. Its carrier R(A) is the least set containingall denotable elements and closed under lub's of directed sets; thus we are able to carry out proofsby induction on R(A). A complete ordered algebra A is inductively reachable i� A = R(A). HenceR(A) is inductively reachable for all complete ordered algebras A. Complete ordered algebras whosecarriers are !-algebraic are inductively reachable i� all of their isolated elements are denotable.If A is an algebra and R is a pre-ordering over A, then R is unary-substitutive i� all unary-derived operations respect R: for all derived operators c[v] of type s! s0 and a; a0 2 As, if aRsa0,then chaiRs0cha0i. Unary-substitutive pre-orderings can fail to be substitutive; see Lemma 2.2.27 of[Sto88] and Counterexample 4.7.If P � S, A is an algebra and R is a pre-ordering over AjP , then Rc, the contextualization of R,is the relation over A de�ned by: aRcs a0 i� chaiRp cha0i, for all derived operators c[v] of type s! p,p 2 P .Lemma 2.1 If P � S, A is an algebra and R is a pre-ordering (respectively, equivalence relation)over AjP , then Rc is the greatest unary-substitutive pre-ordering (respectively, equivalence relation)over A whose restriction to P is included in R.Proof. See Lemma 2.2.25 of [Sto88]. 2Lemma 2.2 If P � S, A is a complete ordered algebra and � is an inductive pre-ordering overAjP , then �c is a unary-substitutive, inductive pre-ordering over A.Proof. See Lemma 2.3.14 of [Sto88]. 2Lemma 2.3 (i) Unary substitutive pre-orderings over reachable algebras are substitutive.(ii) Unary substitutive, inductive pre-orderings over inductively reachable, complete ordered alge-bras are substitutive.Proof. See Lemmas 2.2.29 and 2.3.35 of [Sto88]. 23 Syntax and Semantics of PCFFor technical simplicity, we have chosen to work with a combinatory logic version of PCF with asingle ground type �, whose intended interpretation is the natural numbers. From the viewpoint ofthe conditional operations, non-zero and zero are interpreted as true and false, respectively.The syntax of PCF is speci�ed by a signature, the sorts of which consist of PCF's types. Theset of sorts S is least such that 3



(i) � 2 S, and(ii) s1! s2 2 S if s1 2 S and s2 2 S.As usual, we let ! associate to the right. De�ne sn, for n 2 !, by: s0 = s and sn+1 = s! sn.The signature � over S has binary (application) operators �s1;s2 of type (s1! s2)� s1! s2 for alls1; s2 2 S, as well as the following constants (nullary operators) for all s1; s2; s3 2 S:(i) 
s of sort s,(ii) Ks1;s2 of sort s1 ! s2 ! s1,(iii) Ss1;s2;s3 of sort (s1! s2! s3)! (s1 ! s2)! s1! s3,(iv) Ys of sort s1 ! s,(v) n of sort �, for n 2 !,(vi) Succ and Pred of sort �1, and(vii) Ifs of sort �! s2.We usually abbreviate x � y to x y, and let application associate to the left.A model A is a complete ordered algebra such that the following conditions hold:(i) A� = f?�; 0A; 1A; : : :g, where ?� v nA for all n 2 ! and nA and mA are incomparablewhenever n 6= m (we often confuse A� with !? below);(ii) For all x 2 As1 and y 2 As2 , Ks1;s2 x y = x;(iii) For all x 2 As1!s2!s3, y 2 As1!s2 and z 2 As1 , Ss1;s2;s3 x y z = x z (y z);(iv) For all x 2 As1 , Ys x is the least �xed point of the continuous function over As that xrepresents;(v) For all x 2 A�, Succ x is equal to ?, if x = ?, and is equal to x+ 1, if x 2 !;(vi) For all x 2 A�, Pred x is equal to ?, if x = ?, is equal to 0, if x = 0, and is equal to x� 1,if x 2 ! � f0g; and(vii) For all x 2 A� and y; z 2 As, Ifs x y z is equal to ?, if x = ?, is equal to y, if x 2 ! � f0g,and is equal to z, if x = 0.A model A is extensional i�, for all x1; x2 2 As1!s2 , if x1 y = x2 y for all y 2 As1 , then x1 = x2,and order-extensional i�, for all x1; x2 2 As1!s2 , if x1 y v x2 y for all y 2 As1 , then x1 v x2. Finally,morphisms between models are simply continuous homomorphisms between the complete orderedalgebras.Application is left-strict in all models A since ?s1!s2 vs1!s2 Ks2;s1 ?s2 , and thus ?s1!s2 x vs2Ks2 ;s1 ?s2 x = ?s2, for all x 2 As1 .The continuous function model E is the unique model E such that E� = !?, Es1!s2 = Es1 !c Es2for all s1; s2 2 S, application is function application and nA = n for all n 2 !. E is clearly order-extensional. The parallel or operation por 2 E�2 is de�ned by: porx y = 1, if x 2 ! � f0g ory 2 ! � f0g, porx y = 0, if x = 0 and y = 0, and porx y = ?, otherwise.Lemma 3.1 If A is a model, then so is R(A).Proof. Follows easily from the fact that R(A) is an inductive subalgebra of A. 2For s 2 S, we write Is for the term Ss;s1;sKs;s1 Ks;s of sort s1. I is the identity operation in allmodels. We code lambda abstractions in terms of the S, K and I combinators, in the standard way.For s 2 S, de�ne approximations Yns to Ys of sort s1 ! s by Y0s = 
s1!s and Yn+1s =Ss1;s;s Is1 Yns , so that Yns is an !-chain in the initial ordered algebra, and thus in all models.4



Following [Mil77, BCL85], we can de�ne syntactic projections 	ns of sort s1, for all n 2 !and s 2 S, by 	n� = Yn�1 F and 	ns1!s2 = �xy:	ns2(x(	ns1 y)), where F of sort �1 ! �1 is�xy: If y (Succ(x(Pred y))) 0. Expanding the abstractions, one can see that the 	ns form an !-chainin the initial ordered algebra, and thus in all models. Given a model A, we write Ans for the subposetof As whose elements are f	ns x j x 2 As g. Clearly An� = f?; 0; 1; : : :; n� 1g for all n 2 !.Lemma 3.2 (Milner/Berry) Suppose A is an extensional model and s 2 S. The 	ns representan !-chain of continuous projections with �nite image over As whose lub is the identify function.Hence x 2 Ans i� x = 	ns x, Ans � Ams whenever n � m, and As is a strongly algebraic cpo whoseset of isolated elements is Sn2!Ans .Proof. The 	ns obviously represent an !-chain of continuous functions. Inductions on S su�ceto show that they are retractions, have �nite image and that their lub is the identity function. Butthen each 	ns is less than the identity function. The rest follows easily. 2Lemma 3.3 Suppose A is an extensional model and s 2 S. The 	ns also represent an !-chain ofcontinuous projections with �nite image over R(A)s whose lub is the identity function. Hence R(A)sis a strongly algebraic cpo and, for all x 2 As,(i) if x 2 R(A)s, then x is isolated in R(A)s i� x is isolated in As;(ii) if x 2 R(A)s is isolated, then x is denotable; and(iii) x 2 R(A)s i� 	n x is denotable for all n 2 !.Proof. Everything except (ii) and the \only if" direction of (iii) follows by Lemma 3.2 and thefact that R(A) is an inductive subalgebra of A. (ii) follows by induction on R(A)s, and the \onlyif" direction of (iii) follows from (ii). 2We write por2 for 	2 por. It is easy to see that por2 and por are interde�nable elements of E�2 .Let the equality test Eq of sort �2 beY(�zxy: If x (If y (z(Pred x)(Pred y)) 0) (Not y));where Not of sort �1 is �x: If x 0 1.For n 2 !, de�ne operators Andn of sort �n by: And0 = 1 andAndn+1 = �xy1 � � �yn: If x (Andn y1 � � � yn) 0:Also following [Mil77, BCL85], de�ne glb operators Infns of sort sn, for n � 1, by:Infn� = �x1 � � �xn: If (Andn�1 (Eqx1 x2) � � � (Eqx1 xn))x1
Infns1!s2 = �x1 � � �xny: Infns2 (x1 y) � � � (xn y):Lemma 3.4 (Milner) If A is an order-extensional model, x1; : : : ; xn 2 As, n � 1 and s 2 S, thenInfn x1 � � � xn is the glb of fx1; : : : ; xng in As|and also in R(A)s, if the xi are in R(A)s.Proof. By induction on S. 2Lemma 3.5 Suppose A is an order-extensional model, X � As is nonempty and s 2 S. ThenFn2!(d(	nX)) is the glb of X in As|and also in R(A)s, if X � R(A)s. Hence As and R(A)s areconsistently complete, !-algebraic cpo's. 5



Proof. Suppose X � As is nonempty. Then the d(	nX) are well-de�ned and form an !-chain byLemmas 3.2 and 3.4. Let x 2 X. Then d(	nX) v x for all n 2 !, and thus Fn2!(d(	nX)) v x.Now, let y be a lb of X. Then 	n y v d(	nX) for all n 2 !, so that y = Fn2!(	n y) vFn2!(d(	nX)), completing the proof that Fn2!(d(	nX)) is the glb of X in As. But, if X �R(A)s, then each d(	nX) 2 R(A)s by Lemma 3.4, so that Fn2!(d(	nX)) 2 R(A)s, as required.The rest follows by Lemmas 3.2 and 3.3. 2The preceding lemma allows us to conclude that both E and R(E) are consistently complete,!-algebraic cpo's.Lemma 3.6 If A is an order-extensional model, then 	n(dX) = d(	nX), for all n 2 ! and�nite, nonempty X � As.Proof. By induction on S, using the fact (Lemma 3.4) that �nite, nonempty glb's are determinedpointwise. 2Since glb's of in�nite subsets of E are not always determined pointwise, it is somewhat surprisingthat we have an in�nitary version of the preceding lemma.Lemma 3.7 If A is an order-extensional model, then 	n(dX) = d(	nX), for all n 2 ! andnonempty X � As.Proof. For all x 2 X, we have that 	n(dX) v 	n x. Thus 	n(dX) v d(	nX). For the otherdirection, d(	nX) = d(	n(	nX)) = 	n(d(	nX)) v 	n(dX) by Lemma 3.6 and the fact thatd(	nX) v dX. 2Following [Plo80], we say that an n-ary logical relation L over a model A, for n 2 !, is an n-aryrelation over A such that hx1; : : : ; xni 2 Ls1!s2 i� hx1 y1; : : : ; xn yni 2 Ls2 for all hy1; : : : ; yni 2 Ls1 .Given such an L and A, we say that an element x 2 As satis�es L i� hx; : : : ; xi 2 Ls.Lemma 3.8 Suppose L is an n-ary logical relation over a model A, s 2 S and D1; : : : ; Dn � As aredirected sets such that, for all xi 2 Di, 1 � i � n, there are yi 2 Di, 1 � i � n, such that xi v yifor all i and hy1; : : : ; yni 2 Ls. Then hFD1; : : : ;FDni 2 Ls.Proof. By induction on S. 2Lemma 3.9 Suppose L is an n-ary logical relation over a model A. If L is satis�ed by 
�, n, forall n 2 !, Succ, Pred and If�, then all elements of R(A) satisfy L.Proof. First we must show that the remaining constants satisfy L. The satisfaction of L by Kand S at all sorts follows as usual. One shows that 
 satis�es L at all sorts by induction on S, usingthe fact that application is strict in its left argument. The proof that If satis�es L at all sorts alsoproceeds by induction on S, using the fact that Ifs1!s2 x y z w = Ifs2 x (y w) (z w) for all x 2 A�,y; z 2 As1!s2 and w 2 As1 . Finally, the satisfaction of L by Y at all sorts follows using Lemma 3.8.A simple induction on T then shows that all denotable elements of A satisfy L, following whichwe use Lemma 3.8 again to show, by induction on R(A), that L is satis�ed by all elements of R(A).2 6



Lemma 3.10 (Plotkin) There is no f 2 R(E)�2 such that f w por2.Proof. Following [Sie92], let L be the ternary logical relation over E such that hx1; x2; x3i 2 L�i� either xi = ? for some i or x1 = x2 = x3. It is easy to see that L satis�es the hypotheses ofLemma 3.9, and thus all elements of R(E) satisfy L. Clearly, h1;?; 0i 2 L� and h?; 1; 0i 2 L�. Thus,if there were such an f , then we would have that hx1; x2; x3i 2 L�, where x1 = f 1?, x2 = f ? 1 andx3 = f 0 0. But x1 = 1, x2 = 1 and x3 = 0|contradicting the de�nition of L. 2The following theorem allows us to de�ne the meaning [[M ]] 2 !? of a term M of sort � to be[[M ]]A, for an arbitrary model A.Theorem 3.11 (Plotkin) For all models A and B and terms M of sort �, [[M ]]A = [[M ]]B.Proof. See Theorem 3.1 of [Plo77]. 2We now de�ne notions of program ordering and equivalence for PCF. De�ne a pre-ordering <�over T jf�g by M <�� N i� [[M ]] v [[N ]], and let � be the equivalence relation over T jf�g inducedby <�. By Lemmas 2.1 and 2.3(i), <�c is a substitutive pre-ordering over T and �c is a congruenceover T . It is easy to see that <�c induces �c. We say that a model A is inequationally fully abstracti� �A = <�c. From [Plo77], we know that E is not inequationally fully abstract. On the otherhand, by [Mil77], there exists a unique (up to order-isomorphism) inequationally fully abstract,order-extensional model.Finally, we recall Milner's important result concerning the order-extensional nature of <�c andthe extensional nature of �c [Mil77].Lemma 3.12 (Milner) (i) <�c� = <�� and �c� = ��.(ii) If M1N <�cs2 M2N for all N 2 Ts1 , then M1 <�cs1!s2 M2.(iii) If M1N �cs2 M2N for all N 2 Ts1 , then M1 �cs1!s2 M2.Proof. See Lemma 4.1.11 of [Cur86]. 2From Lemma 3.12(i), we know that, for all terms M of sort �, either M �c� 
 or M �c� n forsome n 2 !.4 Normalization of R(E)In this section, we focus on E . Apart from the counterexamples, however, we could just as wellwork with any other order-extensional model, such as the bidomains model [BCL85]. We begin byde�ning semantic analogues of <�c and �c.De�nition 4.1 De�ne an inductive pre-ordering � over Ejf�g by x �� y i� x v y, and let � be theequivalence relation over Ejf�g induced by �.Clearly, � is just the identity relation over Ejf�g.Lemma 4.2 (i) �c is a unary-substitutive, inductive pre-ordering over E .(ii) �c is the unary-substitutive equivalence relation over E induced by �c.(iii) For all M;N 2 Ts, M <�cs N i� [[M ]] �cs [[N ]].(iv) For all M;N 2 Ts, M �cs N i� [[M ]] �cs [[N ]].7



Proof. (i) follows from Lemma 2.2, (ii) is by Lemma 2.1 and an easy calculation, (iii) can beshown by another simple calculation, and (iv) follows from (ii) and (iii). 2Lemma 4.3 (i) The restriction of �c to R(E) is a substitutive, inductive pre-ordering over R(E).(ii) The restriction of �c to R(E) is a congruence over R(E).Proof. (i) follows by Lemma 2.3(ii) and the fact that R(E) is an inductive subalgebra of E , and(ii) follows from (i). 2Lemma 4.4 (i) �c� = �� and �c� = ��.(ii) For all x1; x2 2 R(E)s1!s2 , if x1 y �c x2 y for all y 2 R(E)s1 , then x1 �c x2.(iii) For all x1; x2 2 R(E)s1!s2 , if x1 y �c x2 y for all y 2 R(E)s1 , then x1 �c x2.Proof. (i) follows fromLemma3.12(i). For (ii), it su�ces to show that 	n x1 �c 	n x2 for all n 2 !,since �c is inductive. But isolated elements of R(E) are denotable, and thus, by Lemma 3.12(ii), itis su�cient to show that 	n x1 y �c 	n x2 y for all y 2 R(E)s1 . But 	n(x1(	n y)) �c 	n(x2(	n y))follows from the hypothesis and Lemma 4.3. Finally, (iii) follows from (ii). 2The following term features prominently below and is a generalization of the parallel or testerintroduced in [Plo77].De�nition 4.5 Let the term Test of sort �! �! �2! � be�xyf: If (Eq (f 1 y) 1)(If (Eq (f x 1) 1)(If (f 0 0)
 0)
)
:Lemma 4.6 For all f 2 E�2 , Test?? f is 0, if f w por2, and ?, otherwise. 2The following is a counterexample to �c (and thus �c) being substitutive.Counterexample 4.7 Test?? �c ?, but Test?? por 6�c ? por.Proof. By Lemmas 4.4, 4.6 and 3.10, we have Test?? �c ?. But Test?? por = 0, and thusTest?? por 6�c ? por. 2We do, however, have:Lemma 4.8 (i) For all x1; x2 2 Es1!s2 and y 2 R(E)s1 , if x1 �c x2, then x1 y �c x2 y.(ii) For all x 2 R(E)s1!s2 and y1; y2 2 Es2 , if y1 �c y2, then x y1 �c x y2.Proof. For (i), since application is continuous and �c is inductive, it su�ces to show x1 y �c x2 ywhen y is isolated. But this follows since all isolated elements of R(E)s1 are denotable and �c isunary-substitutive. (ii) follows similarly. 2The following result shows that we cannot allow x1; x2 to range over Es1!s2 in parts (ii) and(iii) of Lemma 4.4. This raises the question (which we leave unanswered) of when nondenotableelements are related by �c and �c. 8



Counterexample 4.9 De�ne G1; G2 2 E�2!�2 byG1 = �f:If (f 0 0) por (�xy:Test 

 f); G2 = �f:If (f 0 0) por
:Then G1 f �c G2 f for all f 2 R(E)�2 , but G1 6�c G2.Proof. It is easy to see that G1 f �c G2 f for all f 2 R(E)�2 . But chG1i = 0 and chG2i = ?,where the derived operator c[v] of type (�2! �2)! � is v (v(�xy: 1))

. Thus G1 6�c G2. 2We are now ready to de�ne our continuous projection over R(E).De�nition 4.10 The function norm:R(E)!R(E) is de�ned bynorms x =lfx0 2 R(E)s j x0 �c x g:By Lemma 3.7, 	n(normx) = df	n x0 j x0 �c x and x0 2 R(E)s g for all n 2 ! and x 2 R(E)s,s 2 S. We write x v�c y for x v y and x �c y.Lemma 4.11 If X is a �nite subset of R(E)s and x0 2 X is such that x0 �c x for all x 2 X, thenx0 �c dX.Proof. By induction on S. 2Lemma 4.12 Let x; y 2 R(E)s, s 2 S, and n 2 !.(i) normx v x.(ii) normx �c x.(iii) If x v�c normy, then x = norm y.(iv) x �c y i� normx v norm y.(v) x �c y i� normx = norm y.(vi) If x v y, then normx v normy.(vii) norm(normx) = normx.(viii) norm(	n x) v�c 	n(normx).(ix) 	n(norm(	n x)) = norm(	n x).(x) normx = Fn2! norm(	n x).(xi) norms is continuous.Proof. (i) Immediate from the reexivity of �c.(ii) By Lemma 4.11, we have that 	n x �c df	n x0 j x0 �c x and x0 2 R(E)s g v normx, forall n 2 !. Thus x �c normx, since �c is inductive. The result then follows by (i).(iii) If x v�c normy, then x �c normy �c y by (ii), so that normy v x. But then x = normy,since x v norm y.(iv) The \if" direction follows from (ii) and the fact that vs � �cs. For the \only if" direction,suppose that x �c y. Let y0 2 R(E)s be such that y0 �c y. Then x �c y0, so that x u y0 �c x byLemma 4.11. But then normx v x u y0 v y0. Thus normx v norm y.(v) Immediate from (iv).(vi) Follows from (iv), since vs � �cs.(vii) Follows by (ii) and (v). 9



(viii) Follows by (i), (ii) and (v).(ix) Since norm(	n x) �c 	n x, we have 	n(norm(	n x)) �c 	n(	n x) = 	n x �c norm(	n x),and thus 	n(norm(	n x)) �c norm(	n x). The result then follows by (iii), since 	n(norm(	n x)) vnorm(	n x).(x) By (vi) and (viii), norm(	n x) v normx and Fn2! norm(	n x) �c 	n(normx), for alln 2 !. Thus Fn2! norm(	n x) v�c normx, since �c is inductive. The result then follows by (iii).(xi) Follows from (x). 2Lemma 4.13 norm(Test??) = ?.Proof. Follows from Counterexample 4.7. 2Lemma 4.14 norm� is the identity function on R(E)�.Proof. Immediate by Lemma 4.4(i). 2The following counterexample shows that Lemma4.12(viii) cannot be strengthened to an identity.Counterexample 4.15 norm(	2(Test 2 2)) 6= 	2(norm(Test 2 2)).Proof. Let the term A of sort �2 be�xy: If (And2 (Eqx 1) (Eq y 2))1(If (And2 (Eqx 2) (Eq y 1))1(If (And2 (Eqx 0) (Eq y 0)) 0
));so that A v por2. Since Test 2 2A = 0, it follows that (norm(Test 2 2))A = 0, and thus that(norm(Test 2 2))por2 = 0. But then	2 (norm(Test 2 2)) por = 	2((norm(Test 2 2))por2) = 	2 0 = 0;showing that 	2(norm(Test 2 2)) 6= ?. On the other hand, it is easy to show that 	2(Test 2 2) =Test??, and thus norm(	2(Test 2 2)) = ? by Lemma 4.13. 2In preparation for three key counterexamples, we now de�ne the following or operations of sort�2, where the \L", \R" and \D" stand for \Left", \Right" and \Divergent", respectively:LOr = �xy: If x 1 (If y 1 0)ROr = �xy: If y 1 (If x 1 0)DOr = �xy: If x (If y
1) (If y 1 0):Lemma 4.16 There is no h 2 R(E)�!�!�2!� such thath?? por = ?; h 0?LOr = 0; h? 0ROr = 0; h 0 0DOr = 0:10



Proof. Suppose, toward a contradiction, that such an h does exist.Let L be the 4-ary logical relation over E such that hx1; x2; x3; x4i 2 L� i� fx1; x2; x3; x4g �f?; ng for some n 2 ! and, if x1 = ?, then one of x2; x3; x4 is also ?. Clearly, 
� and all n 2 !satisfy L. Furthermore, Succ and Pred satisfy L since it is satis�ed by all elements of E�1 . Finally,it is easy to show that L is satis�ed by If�. Hence h satis�es L, by Lemma 3.9.Next, we show that hpor;LOr;ROr;DOri 2 L�2 . Suppose that hx1; x2; x3; x4i 2 L� andhy1; y2; y3; y4i 2 L�. We must show that hz1; z2; z3; z4i 2 L�, where z1 = porx1 y1, z2 = LOr x2 y2,z3 = ROrx3 y3 and z4 = DOrx4 y4. Clearly, each zi 2 f?; 0; 1g. Furthermore, if zi = 0 for some i,then both xi and yi must be 0, so that no xj or yj is a nonzero element of !, and thus no zj = 1.Now, suppose that z1 = ?. We must show that one of z2; z3; z4 is ?. Either x1 or y1 must be ?,and we consider the case when x1 = ?, the other case being dual. Since LOr and DOr are strictin their �rst arguments, if xi = ? for some i 2 f2; 4g, then zi = ?. Otherwise, we must havethat x3 = ? and x2 = x4 6= ?. Now, if y3 2 f?; 0g, then z3 = ?. Otherwise, y3 2 ! � f0g andy1; y2; y4 2 f?; y3g. But then y1 = ? (otherwise z1 = 1), and thus either y2 = ? or y4 = ?. SinceDOr is also strict in its second argument, if y4 = ?, then z4 = ?. Otherwise, y2 = ? and y4 = y3.Now, if x2 = 0, then z2 = ?. Otherwise, we have that x2 = x4 2 ! � f0g. But then z4 = ?, sinceboth x4; y4 2 ! � f0g.Summarizing, we have that h satis�es L and hpor;LOr;ROr;DOri 2 L�2 . Furthermore,h?; 0;?; 0i 2 L� and h?;?; 0; 0i 2 L�, so that hz1; z2; z3; z4i 2 L�, where z1 = h?? por,z2 = h 0?LOr, z3 = h? 0ROr and z4 = h 0 0DOr. But z1 = ? and z2 = z3 = z4 = 0, con-tradicting the de�nition of L. 2The following counterexample shows that application is not preserved by norm.Counterexample 4.17 norm(Test?) 6= (normTest)(norm?).Proof. By Lemma 4.4(iii) and Counterexample 4.7, we have thatTest? �c �y: If y (Test? y) (Test? y);so that (norm(Test?))? por = ?. Since norm? = ?, it is thus su�cient to show that h?? por 6=?, where h = normTest. Buth 0?LOr = 0; h? 0ROr = 0; h 0 0DOr = 0;since h �c Test, and thus h?? por 6= ? by Lemma 4.16. 2Since norm((normTest)(norm?)) = norm(Test?), it follows from the preceding counterexamplethat the image of norm is not closed under application.Counterexample 4.18 There is no norm0 2 R(E)(�!�2!�)1 such that norm0 x = normx for allx 2 R(E)�!�2!�.Proof. Suppose, toward a contradiction, that such a norm0 does exist. Then, for all y 2 R(E)�,Test y �c norm(Test y) = norm0(Test y) = (�y: norm0(Test y)) y;11



so that Test �c �y: norm0(Test y). Then,(normTest)(norm?) = (norm(�y: norm0(Test y)))?v�c (�y: norm0(Test y))?= norm0(Test?)= norm(Test?):But then (normTest)(norm?) = norm(Test?), contradicting Counterexample 4.17. 2The following counterexample shows that denotable elements can be contextually equivalent tonondenotable ones.Counterexample 4.19 h �c Test does not imply that h 2 R(E).Proof. Let h 2 E�!�!�2!� be �xy: If (pconx y) (Test x y) 
, where the parallel convergenceoperation pcon 2 E�2 is de�ned by: pconx y = 1, if x 6= ? or y 6= ?, and pcon x y = ?, otherwise.Then h =2 R(E), by Lemma 4.16. It remains to show that h �c Test.In the remainder of the proof, we work in the result of adding to PCF a constant PCon of sort�2 whose interpretation is pcon. All of the results preceding Lemma 4.16 hold for the extendedlanguage, with the exception of Lemma 3.9. This lemma can be repaired, however, by adding PConto the list of constants in its hypothesis. The logical relation de�ned in the proof of Lemma 3.10is also satis�ed by PCon and thus this lemma is true for the extended language. (The originalproof that parallel or is not de�nable from parallel convergence can be found in [Abr90]. [Plo77] didnot show that the continuous function model of the extended language was not inequationally fullyabstract.)It is su�cient to show h �c Test, and, since h 2 R(E), this will be a consequence of showing thathx y �c Testx y for all x; y 2 R(E)�. If x 6= ? or y 6= ?, then hx y = Test x y. But Test?? �c ?was shown in Counterexample 4.7. 2Although we were able to solve negatively the question of whether norm preserves application,the following problem is still open.Open Problem 4.20 Is norm� = � for all constants � 2 �? In particular, is (normK)x y everstrictly less than x?Now, we are able to show how the unique inequationally fully abstract, order-extensional modellives inside the continuous function model.De�nition 4.21 We de�ne the ordered algebra N (E) as follows. For all s 2 S, N (E)s consistsof normR(E)s, ordered by the restriction of vEs to normR(E)s. For all x 2 N (E)s1!s2 andy 2 N (E)s1 , x �N(E) y = norm(x �E y). For all constants �, �N(E) = norm�E .N (E) is a subcpo of R(E) and N (E) is well-de�ned, since norm is strict and continuous.Theorem 4.22 N (E) is an order-extensional model and norm is a surjective morphism from R(E)to N (E). 12



Proof. N (E) is a complete ordered algebra by the preceding remark and the continuity of norm.Condition (i) of the de�nition of model holds by Lemma 4.14, and the remaining conditions canbe shown using Lemma 4.12(ii) and (v) and (for condition (iv)) the continuity of norm. For theorder-extensionality of N (E), suppose that x1; x2 2 N (E)s1!s2 are such that x1 �N(E) y v x2 �N(E) yfor all y 2 N (E)s1 . Then, for all y 2 R(E)s1 ,norm(x1 �E y) = x1 �N(E) normy v x2 �N(E) normy = norm(x2 �E y);and thus x1 �E y �c x2 �E y. But then x1 �c x2 by Lemma 4.4(ii), so that x1 = normx1 v normx2 =x2. Finally, norm is a surjective morphism from R(E) to N (E) because of the way N (E) was de�ned.2 By Lemma 3.5, we know that N (E) is a consistently complete, !-algebraic cpo.Lemma 4.23 For all terms M , [[M ]]N(E) = norm[[M ]]E.Proof. A consequence of norm being a morphism from R(E) to N (E). 2Theorem 4.24 N (E) is inequationally fully abstract.Proof. Follows from Lemmas 4.2(iii) and 4.23. 25 Full Abstraction and Lambda De�nabilityThere appears to be no clear de�nition of what the \full abstraction problem" for PCF really is. ByMilner's construction [Mil77] we know that there is a unique inequationally fully abstract, order-extensional model F (which we refer to below as the fully abstract model) that is made up out ofScott-domains of continuous (set-theoretic) functions. Why are we not satis�ed? The answer to thisquestion, as one often reads, is that Milner's model is \syntactic in nature". The same words are usedagainst Mulmuley's description [Mul87] of the fully abstract model. What people vaguely imagine isthat there ought to be a description of F using cpo's enriched with some additional structure (order-theoretic, topological, etc.) which allows the domains of the fully abstract model to be constructedwithout recourse to the syntax of PCF. Of course, nobody can specify what this additional structurewill be or should be. Stated this way, there is no chance to falsify this research programme, in thesense that there is no way one can prove a result saying that there is no \semantic" presentation ofF . We would therefore like to give a weak but precise minimal condition that a semantic solutionof the full abstraction problem should satisfy. Namely, it should allow us to e�ectively construct the�nite domains Fs of the fully abstract model F of Finitary PCF , i.e., the variant of PCF in whichthe sort � is interpreted as the booleans (f?; 0; 1g) rather than the natural numbers. (The resultsof this paper can be trivially adapted to Finitary PCF.) Clearly, neither Milner's nor Mulmuley'sconstructions achieve this. On the other hand, even if we can �nd such an algorithm for presentingF , we may still be unsatis�ed with it as a semantic description.The results of this paper give one of the simplest descriptions of the fully abstract model to date.In order to satisfy the above condition, all one needs to �nd is an algorithm that decides whether anelement of E is denotable, since then one will be able to e�ectively present R(E) and thus N (E).13



The problem of deciding which elements of a model are de�nable in the case of the typed lambdacalculus (without constants) and the full set-theoretic type hierarchy based on a �nite set is knownas \Plotkin's conjecture". (It seems that the term was coined by Statman in his 1982 paper [Sta82].We do not know whether Plotkin ever considered the question nor whether he ever conjecturedanything.) The \conjecture" is that the problem is decidable. We prefer to call it the \lambdade�nability problem" (cf. [JT93]). This problem can be studied in all kinds of contexts, and itcertainly makes sense to ask whether it is decidable which elements of E are denotable. We refer tothis as the lambda de�nability problem for Finitary PCF.Since a positive solution to the lambda de�nability problem for Finitary PCF will mean thatN (E) and thus F are e�ectively presentable, it is natural to ask whether the converse is also true.We conjecture that it is.AcknowledgmentsPart of this work was done while the second author was a Guest Researcher at the TechnischeHochschule Darmstadt in September, 1991.References[Abr90] S. Abramsky. The lazy lambda calculus. In D. L. Turner, editor, Research Topics inFunctional Programming, pages 65{116. Addison-Wesley, 1990.[BCL85] G. Berry, P.-L. Curien and J.-J. L�evy. Full abstraction for sequential languages: the stateof the art. In M. Nivat and J. C. Reynolds, editors, Algebraic Methods in Semantics, pages89{132. Cambridge University Press, 1985.[Cur86] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Program-ming. Research Notes in Theoretical Computer Science. Pitman/Wiley, 1986.[JT93] A. Jung and J. Tiuryn. A new characterization of lambda de�nability. In InternationalConference on Typed Lambda Calculi and Applications, Lecture Notes in Computer Science.Springer-Verlag, 1993.[Mil77] R. Milner. Fully abstract models of typed �-calculi. Theoretical Computer Science, 4:1{22,1977.[Mul87] K. Mulmuley. Full Abstraction and Semantic Equivalence. MIT Press, 1987.[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,5:223{256, 1977.[Plo80] G. D. Plotkin. Lambda-de�nability in the full type hierarchy. In J. Seldin and J. Hindley,editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,pages 363{374. Academic Press, 1980.[Sie92] K. Sieber. Reasoning about sequential functions via logical relations. In M. P. Fourman,P. T. Johnstone and A. M. Pitts, editors, Applications of Categories in Computer Science,volume 177 of LMS Lecture Note Series, pages 258{269. Cambridge University Press, 1992.14
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