
Equationally Fully Abstract Models of PCF 1Allen StoughtonComputer Science and Arti�cial IntelligenceSchool of Cognitive and Computing SciencesUniversity of SussexFalmer, Brighton BN1 9QH, England1 IntroductionIn Plotkin's applied typed lambda calculus PCF [Plo] it is natural to consider one term operationallyless de�ned than another i� whenever the �rst term converges to a constant in a ground context,then the second term converges to the same constant in that context. Two terms are consideredoperationally equivalent i� each is less de�ned than the other, i.e., they have the same behaviour inall ground contexts. Terms are thus equivalent when they are interchangeable in complete programs.See [Mey] and [Sto] for detailed discussions of these concepts.Over a decade ago, Robin Milner showed the existence of a unique order-extensional model ofPCF that is inequationally fully abstract in the sense that one term is operationally less de�ned thananother exactly when the meaning of the �rst is less than that of the second in the model [Mil].(Models that consist of functions are called extensional; when in addition these functions are orderedpointwise, the models are called order-extensional.) Milner constructed this model using term modeltechniques, and considerable e�ort has been expended in attempts to synthesize his model in a morenatural or semantic way; see [BerCurL�ev] for a survey of this work.In practice, term equivalence is probably of greater interest than term ordering, and this sug-gests that one consider models that are equationally fully abstract in the sense that two terms areoperationally equivalent exactly when they are mapped to the same semantic value. Milner's inequa-tionally fully abstract model is clearly equationally fully abstract, and it is natural to ask whetherthere exist equationally fully abstract models that are not inequationally fully abstract. The purposeof this paper is to answer this question in the a�rmative, and to begin the study of the category Eof extensional, equationally fully abstract models and structure-preserving functions.The paper's main results are as follows:(i) E is a pre-ordering with arbitrary products and coproducts and whose initial and terminalobjects are not isomorphic.(ii) All objects of E are strongly algebraic (SFP) and all isolated elements of these models arede�nable by terms.(iii) There is a morphism from an object A to an object B of E i� B relates at least as manypairs of terms as does A (i.e., if the meaning of M is less than that of N in A, then the meaning ofM is less than that of N in B).1Appears in Fifth International Conference on the Mathematical Foundations of Programming Semantics, LectureNotes in Computer Science, vol. 442, pp. 271{283, Springer-Verlag, 1990.1



(iv) Objects of E that relate the same pairs of terms are isomorphic.(v) The initial object of E is also initial in the category of (not necessarily extensional) equa-tionally fully abstract models.(vi) The terminal object of E is order-extensional and inequationally fully abstract, i.e., is Mil-ner's original model.2 PreliminariesThe reader is assumed to be familiar with such standard domain-theoretic concepts as completepartial orders (cpo's), continuous functions, and !-algebraic, strongly algebraic and consistentlycomplete cpo's.A function f :P!Q over posets is an order-embedding i� for all p1; p2 2 P , p1 v p2 i� f p1 v f p2.In the sequel we will make essential use of Berry's category of dI-domains and stable functions,the de�nitions of which we now review. A dI-domain P is an !-algebraic, consistently complete cposuch that(i) x u (y t z) = (x u y) t (x u z), for all x; y; z 2 P such that fy; zg is consistent; and(ii) for all isolated p 2 P , f p0 2 P j p0 v p g is �nite.A function f :P!Q between dI-domains is stable i� it is continuous and for all p 2 P and q 2 Qsuch that q v f p, there exists a least p0 2 P such that p0 v p and q v f p0. Given dI-domains P andQ, the poset P !s Q consists of the set of all stable functions from P to Q, with the stable ordering :f v g i�(i) f p v g p, for all p 2 P ; and(ii) for all p; p0 2 P and q 2 Q, if q v f p, p0 v p and q v g p0 then q v f p0.In [Ber], it is shown that the collection of dI-domains is closed under !s , and that the category ofdI-domains and stable functions, ordered with the stable ordering, is a cpo-enriched cartesian closedcategory.To see that the stable ordering is �ner than the pointwise ordering, de�ne functions f; g:N?!N?by f x = � ? if x = ?; and0 otherwise,and g x = 0. Then f is less than g in the pointwise ordering, but not in the stable ordering.3 Fully Abstract Models of Programming LanguagesIn this section, we recall|very briey|the de�nitions and results from [Sto] that will be requiredin the sequel. A gentle introduction to this material can be found in this reference.The reader is assumed to be familiar with many-sorted signatures � over sets of sorts S, as wellas algebras over such signatures. Signatures are assumed to contain distinguished constants 
s ateach sort s, which intuitively stand for divergence. We use uppercase script letters (A, B, etc.) todenote algebras and the corresponding italic letters (A, B, etc.) to stand for their carriers. We writeT� (or just T ) for the initial (term) algebra, so that Ts is the set of terms of sort s. Given an algebraA and a term t of sort s, [[t]]A (or just [[t]]) is the meaning of t in As, i.e., the image of t under theunique homomorphism from T to A. An algebra is reachable i� all of its elements are denotable(de�nable) by terms. A pre-ordering over an algebra is substitutive i� it is respected by all of the2



operations of that algebra. Substitutive equivalence relations are called congruences, as usual. Apre-ordering over an algebra in which the 
 constants are least elements at all sorts is referred toas 
-least. The congruence over T that is induced by an algebra A is called �A: two terms arecongruent when they are mapped to the same element of A. When we say that c[v1; : : : ; vn] is aderived operator of type s1 � � � � � sn ! s0, this means that c is a context of sort s0 over contextvariables vi of sort si. We write cA for the corresponding derived operation over an algebra A.Familiarity with ordered algebras, i.e., algebras whose carriers are S-indexed families of posetswith least elements denoted by the 
 constants, and whose operations are monotone functions,is also assumed. Such an algebra is called complete when its carrier is a cpo and operations arecontinuous, and a homomorphism over complete ordered algebras is called continuous when it iscontinuous on the underlying cpo's. Two complete ordered algebras are order-isomorphic i� thereexists a continuous homomorphism from one to the other that is a surjective order-embedding onthe underlying cpo's. In any full subcategory of the category of complete ordered algebras andcontinuous homomorphisms, objects are isomorphic exactly when they are order-isomorphic. Wewrite OT� (or just OT ) for the initial ordered algebra, which consists of T with the \
-match"ordering: one term is less than another when the second can be formed by replacing occurrencesof 
 in the �rst by terms. A complete ordered algebra is called inductively reachable i� all of itselements can be reached by the following trans�nite process: start with the denotable elements, andclose under lub's of directed sets. Complete ordered algebras whose carriers are !-algebraic andwhose isolated elements are all denotable are thus inductively reachable, but the converse is false.The 
-least substitutive pre-ordering over T that is induced by an ordered algebra A is called �A:one term is less than another when the meaning of the �rst is less than that of the second in A.If P � S, A is an algebra and R is a pre-ordering over AjP then Rc, the contextualization of R,is the relation over A de�ned by: aRcs a0 i� chaiRp cha0i, for all derived operators c[v] of type s! p,p 2 P .Lemma 3.1 If P � S, A is a reachable algebra and R is a pre-ordering (respectively, equivalencerelation) over AjP then Rc is the greatest substitutive pre-ordering (respectively, congruence) overA whose restriction to P is included in R.Proof. See lemmas 2.2.25 and 2.2.29 of [Sto]. 2Let � be a congruence over T and A be an algebra. Then A is �-equationally correct i� �A � �,and �-equationally fully abstract i� �A = �.Let � be an 
-least substitutive pre-ordering over T and A be an ordered algebra. Then A is�-inequationally correct i� �A � �, and �-inequationally fully abstract i� �A = �.Let � be a congruence over T and A be an algebra. Then A is �-contextually correct i� for allderived operators c1[v1; : : : ; vn] and c2[v1; : : : ; vn] of type s1 � � � � � sn ! s0,if c1A = c2A then for all ti 2 Tsi ; 1 � i � n; c1ht1; : : : ; tni �s0 c2ht1; : : : ; tni;and A is �-contextually fully abstract i� for all derived operators c1[v1; : : : ; vn] and c2[v1; : : : ; vn] oftype s1 � � � � � sn ! s0,c1A = c2A i� for all ti 2 Tsi ; 1 � i � n; c1ht1; : : : ; tni �s0 c2ht1; : : : ; tni:3



Theorem 3.2 Suppose A is an inductively reachable complete ordered algebra and � is a congruenceover T . Then A is �-fully abstract i� A is �-contextually fully abstract.Proof. See theorem 5.3.1 of [Sto]. 2A family of least �xed point constraints � is an S-indexed family of sets such that for all s 2 S,�s � Ts �PTs, and for all ht; T 0i 2 �s, T 0 is a directed set in OT s. We write t�FT 0 instead ofht; T 0i for elements of �s.A family of least �xed point constraints � is closed i� for all � 2 � of type s1 � � � � � sn! s0, ifti�FT 0i 2 �si, 1 � i � n, and T 00 is a co�nal subset of �(T 01�� � ��T 0n) then �ht1; : : : ; tni�FT 00 2 �s0 .We write � for the closure of �, i.e., the least closed family of least �xed point constraints containing�. A complete ordered algebra A satis�es � i� for all t�FT 0 2 �s, s 2 S, [[t]] = Ff [[t0]] j t0 2 T 0 g.An 
-least substitutive pre-ordering � over T satis�es � i� for all t�FT 0 2 �s, s 2 S, t is a lub ofT 0 in hTs;�si.Lemma 3.3 Let � be a family of least �xed point constraints and A be a complete ordered algebra.If A satis�es �, then A satis�es �.Proof. See lemma 3.2.7 of [Sto]. 2Lemma 3.4 Let A be a complete ordered algebra that satis�es �, and P � S. De�ne a pre-ordering� over T jP by: t1 �p t2 i� [[t1]] vp [[t2]]. Then �c is an 
-least substitutive pre-ordering over Tthat satis�es �.Proof. See the proofs of lemma 4.1.1 and theorem 7.1.1 of [Sto]. 2Theorem 3.5 Suppose � is a closed family of least �xed point constraints and � is an 
-least sub-stitutive pre-ordering over T that satis�es �. There exists an inductively reachable, �-inequationallyfully abstract, complete ordered algebra I(�;�) satisfying �, such that if A is a complete ordered al-gebra satisfying � with the property that � � �A, then there is a unique continuous homomorphismh: I(�;�)!A.Proof. See theorem 5.1.3 and corollary 5.1.6 of [Sto]. 24 Syntax and Semantics of PCFIn this section, we collect together the various de�nitions and theorems about the syntax and se-mantics of PCF that we require in the sequel. For technical simplicity, we have chosen to work witha combinatory logic version of PCF with a single ground type �, whose intended interpretation isthe natural numbers. From the viewpoint of the conditional operations, zero is interpreted as falseand non-zero as true.We begin by de�ning the syntax of PCF, i.e., its signature. The sorts of this signature consistsof PCF's types. The set of sorts S is least such that(i) � 2 S, and(ii) s1! s2 2 S if s1 2 S and s2 2 S. 4



De�ne �n, for n 2 !, by: �0 = � and �n+1 = �! �n. The signature � over S has the followingoperators:(i) 
s of type s,(ii) Ks1 ;s2 of type (s1! s2! s1),(iii) Ss1 ;s2;s3 of type ((s1! s2! s3)! (s1 ! s2)! s1! s3),(iv) Ys of type ((s! s)! s),(v) n of type �, for n 2 !,(vi) Succ and Pred of type (�! �),(vii) Ifs of type (�! s! s! s), and(viii) �s1;s2 of type (s1 ! s2) � s1 ! s2,where the compound sorts are parenthesized in order to avoid confusion. Thus � (application) is abinary operator, and all of the other operators are nullary. In keeping with standard practice, weusually abbreviate M �N to M N , and let application associate to the left.Next, we de�ne several combinators that will be required below. We confuse use and mentionfor these combinators: given a combinator C, we also write C for its denotation in any model thatmay be at hand.For s 2 S, we write Is for the term Ss;s!s;sKs;s!sKs;s of sort s! s. I will be the identityoperation in all models. For s 2 S, de�ne approximations Y ns to Ys of sort (s! s)! s byY 0s = 
(s!s)!s; Y n+1s = Ss!s;s;s Is!s Y ns ;so that Y ns is an !-chain in OT (s!s)!s. For all n 2 ! and s 2 S, de�ne syntactic projections 	ns ofsort s! s by 	n� = Y n�!� F; 	ns1!s2 = �x: �y: (	ns2(x(	ns1 y)));where F of sort (�! �)! �! � is�x: �y: (If y (Succ(x(Pred y))) 0):Expanding the abstractions, one can see that the 	ns form an !-chain in OT s!s. Let the equalitytest Eq of sort �! �! � beY (�z: �x: �y:(If x (If y (z(Pred x)(Pred y)) 0) (If y 0 1))):Eq yields 1 for true and 0 for false. De�ne glb operators Infs of sort s! s! s byInf� = �x: �y: (If (Eq x y)x
);Infs1!s2 = �x: �y: �z: (Infs2(x z)(y z)):For n 2 !, de�ne operators Andn of sort �n by: And0 = 1 andAndn+1 = �x: �y1: : : : �yn: (If x (Andn y1 � � � yn) 0):De�ne step operators Stn of sort �! �, for n 2 !, byStn = �x: (If (Eq nx) 1
):5



Stn yields true (1) if its argument is n, and diverges otherwise. De�ne alternative identify operatorsI0s of sort s! s by I 0� = Y�!� F; I 0s1!s2 = �x: �y: (I0s2(x(I 0s1 y))):I0 will be identical to I in some models.A model A of PCF is a complete ordered algebra such that the following conditions hold:(i) A� is the at cpo 0A 1A 2A?� � � �@@@ ���;(ii) For all s1; s2 2 S, a1 2 As1 and a2 2 As2 , Ks1;s2 a1 a2 = a1;(iii) For all s1; s2; s3 2 S, a1 2 As1!s2!s3 , a2 2 As1!s2 and a3 2 As1 , Ss1;s2;s3 a1 a2 a3 =a1 a3 (a2 a3);(iv) For all s 2 S, Ys = Fn2! Y ns ;(v) For all a 2 A�, Succ a is equal to ?�, if a = ?�, and is equal to a + 1, if a 2 !;(vi) For all a 2 A�, Pred a is equal to ?�, if a = ?�, is equal to 0, if a = 0, and is equal to a� 1,if a 2 N � f0g.(vii) For all s 2 S, a1 2 A�, and a2; a3 2 As, Ifs a1 a2 a3 is equal to ?s, if a1 = ?�, is equal toa2, if a1 2 N � f0g, and is equal to a3, if a1 = 0.A model A is extensional i� for all a1; a2 2 As1!s2, if a1 a = a2 a, for all a 2 As1 , then a1 = a2,and order-extensional i� for all a1; a2 2 As1!s2 , if a1 a vs2 a2 a, for all a 2 As1 , then a1 vs1!s2 a2.Finally, morphisms between models are simply continuous homomorphisms between the completeordered algebras.Application is left-strict in all models A since ?s1!s2 vs1!s2 Ks2;s1 ?s2, and thus ?s1!s2 a vs2Ks2 ;s1 ?s2 a = ?s2, for all a 2 As1 .The following theorem introduces the stable function model, which features prominently below[Ber][BerCurL�ev].Theorem 4.1 (Berry) There is a unique model A constructed from the category of dI-domains andstable functions in the natural way, i.e., such that A� = N?, As1!s2 = As1 !s As2 , a1 � a2 = a1 a2,and nA = n. A is extensional but not order-extensional.The following theorem is proved by making use of an operational semantics for PCF; see theorem3.1 of [Plo].Theorem 4.2 (Plotkin) For all models A and B and terms M of sort �, [[M ]]A = [[M ]]B.This theorem allows us to de�ne the meaning [[M ]] 2 N? of a term M of sort � to be [[M ]]A, foran arbitrary model A.We now de�ne notions of program ordering and equivalence for PCF. De�ne a pre-ordering <�over T jf�g by: M <�� N i� [[M ]] v [[N ]], and let � be the equivalence relation over T jf�g inducedby <�. Then, <�c is an 
-least substitutive pre-ordering over T , �c is a congruence over T , and <�cinduces �c.Specializing the notions of the previous section, we say that a model is6



(i) inequationally correct i� it is <�c-inequationally correct ;(ii) inequationally fully abstract i� it is <�c-inequationally fully abstract ;(iii) equationally correct i� it is �c-equationally correct ;(iv) equationally fully abstract i� it is �c-equationally fully abstract ;(v) contextually correct i� it is �c-contextually correct ; and(vi) contextually fully abstract i� it is �c-contextually fully abstract .It is not hard to show that all models are inequationally, equationally and contextually correct.Clearly inequational full abstraction implies equational full abstraction, but the converse, as we shallsee, is false. The stable function model is not even equationally fully abstract [Ber][BerCurL�ev].Finally, we recall Milner's important result concerning the order-extensional nature of <�c andthe extensional nature of �c; see lemma 4.1.11 of [Cur].Theorem 4.3 (Milner) (i) <�c� = <�� and �c� = ��.(ii) For all M1;M2 2 Ts1!s2 , M1 <�cs1!s2 M2 i� for all N 2 Ts1 , M1N <�cs2 M2N .(iii) For all M1;M2 2 Ts1!s2 , M1 �cs1!s2 M2 i� for all N 2 Ts1 , M1N �cs2 M2N .From theorem 4.3 (i), we know that for all terms M of sort �, either M �c� 
 or M �c� n, forsome n 2 !.5 Equationally Fully Abstract ModelsThis section consists of the paper's main results, concerning the category E of extensional, equa-tionally fully abstract models and their morphisms. To begin with, we introduce our main technicaldevice. Let � be the family of least �xed point constraints such that�(s!s)!s = fYs�FfY ns j n 2 ! gg;for all s 2 S, and �s = ;, whenever s does not have the form (s0 ! s0)! s0. A least �xed pointordering � is an 
-least substitutive pre-ordering over T that induces �c and satis�es �. We writeL for the set of all least �xed point orderings, ordered by inclusion.By lemma 3.3, all models satisfy �. Lemma 3.4 allows us to conclude that <�c is an element ofL.Lemma 5.1 For all least �xed point orderings � and terms M;N of sort �, M �� N i� eitherM �c� 
 or M �c� N . Thus, all least �xed point orderings agree at sort �.Proof. Suppose that � 2 L and m �� n, for m;n 2 !. De�ne a term M of sort �! � whichyields n when applied to m and m when applied to n. Then n �c� Mm �� M n �c� m, showing thatn �� m, and thus m �c� n. The rest follows easily. 2Lemma 5.2 Let A be an extensional model and P = f�; �! �g. De�ne a pre-ordering � over T jPby: M �p N i� [[M ]]vp [[N ]]. Then �c is a least �xed point ordering.Proof. By lemma 3.4, all that remains to be shown is that �c \ �c = �c. Clearly, �c � <�c, andthus �c \ �c � �c. For the opposite inclusion, suppose that M1 �cs M2, and let c[v] be a derivedoperator of type s! (�! �). We must show that [[chM1i]] = [[chM2i]], and since A is extensional andall elements of A� are denotable, it su�ces to show that [[chM1iN ]] = [[chM2iN ]], for all terms N ofsort �. But this follows from the assumption that M1 �cs M2. 27



Theorem 5.3 L is a nontrivial complete lattice whose greatest element is <�c.Proof. We have already observed that <�c 2 L. To see that L is nontrivial, let A be the stablefunction model, and de�ne � as in the statement of lemma 5.2. The lemma then allows us toconclude that �c 2 L. To see that <�c and �c are distinct, de�ne terms M;N of sort �! � byM = �x: (If x 0 0) and N = �x: 0. Then M <�c�!� N by theorem 4.3 (ii), but M 6�c�!� N since M isnot less than N in A�!�.Showing that L is closed under arbitrary nonempty intersections is straightforward, and it re-mains to show that <�c is the greatest element of L. Suppose that � 2 L, M �s N and let c[v] bea derived operator of type s! �. Then chM i �� chN i, and thus chM i <�� chN i by lemma 5.1. Butthen M <�cs N , as required. 2We write �0 for the least element of L.Theorem 5.4 For each least �xed point ordering �, there is an inductively reachable, �-inequationally fully abstract model M(�), such that for all models A with the property that � � �A,there is a unique morphism from M(�) to A. In particular, M(�) is initial in the category of �-inequationally fully abstract models and their morphisms.Proof. By theorem 3.5, we know all that is necessary about M(�) except conditions (i){(iii) and(v){(vii) of the de�nition of model. Condition (i) holds since the denotable elements are orderedproperly (lemma5.1) andM(�) is inductively reachable. The remaining conditions can be expressedby sets of equations (pairs of derived operators), and these equations hold in M(�) since it iscontextually fully abstract (theorem 3.2) and all models are contextually correct. 2M(�) is uniquely speci�ed, up to order-isomorphism.A model A is syntactically strongly algebraic (or syntactically SFP) i� the following conditionshold:(i) 	ns (	ns a) = 	ns a, for all a 2 As, n 2 ! and s 2 S;(ii) a = Fn2!(	ns a), for all a 2 As and s 2 S; and(iii) f	ns a j a 2 As g is �nite, for all n 2 ! and s 2 S.The carrier of any syntactically SFP model is clearly SFP. Furthermore, if such a model isinductively reachable then 	ns a is isolated and thus denotable, for all a 2 As and n 2 !.Lemma 5.5 (Milner) (i) Extensional models are syntactically SFP.(ii) For all models A and a1; a2 2 A�, Inf� a1 a2 is the glb of a1 and a2. If A is order-extensional,then for all s 2 S and a1; a2 2 As, Infs a1 a2 is the glb of a1 and a2.(iii) The carriers of order-extensional models are Scott domains, i.e., consistently complete, !-algebraic cpo's.Proof. (i) and (ii) are straightforward inductions on S. For (iii), each As is !-algebraic, by part (i).For consistent completeness, it su�ces to show that each consistent pair a1; a2 of isolated elementsof As has a lub. Let n 2 ! be such that 	n ai = ai, for i = 1; 2, and X = f	n a j a ws fa1; a2g g.Then X is nonempty and �nite, and thus has a glb z, by part (ii). But z is easily seen to be the lubof a1 and a2. 2Lemma 5.5 tells us, in particular, that the stable function model is syntactically SFP.8



Theorem 5.6 Inductively reachable, equationally fully abstract models are syntactically SFP andextensional. If, in addition, a model is inequationally fully abstract, then it is order-extensional.Proof. Let A be such a model. Condition (i) of the de�nition of syntactic strong algebraicityholds, since A is contextually fully abstract and (i) holds in, e.g., the stable function model, which iscontextually correct. Expanding the identi�er abstractions, one can see that I 0s�Ff	ns j n 2 ! g 2�s!s, for all s 2 S. Since A is equationally fully abstract, we have that I 0s = Is, and thus thatI0s a = a, for all a 2 As and s 2 S. Thus condition (ii) holds.For condition (iii), we prove by induction on A that for all a 2 As, s 2 S, and n 2 !, there is aterm M of sort s such that 	ns a = [[	ns M ]]. This is obvious for denotable elements. Suppose thatit is true for the elements of a directed set D. Then	ns GD =Gf	ns d j d 2 D g =Gf [[	ns N ]] j N 2 T 0 g;for a set of terms T 0. But f [[	ns N ]] j N 2 T 0 g is �nite (since it is �nite in, e.g., the stable functionmodel) and thus contains its own lub, which is some [[	ns N ]], thus completing the induction. Then,f	ns a j a 2 As g is equal to f [[	ns M ]] jM 2 T g, and thus is �nite by the above reasoning.For the extensionality of A, suppose that a1; a2 2 As1!s2 and a1 a0 = a2 a0, for all a0 2 As1 . Toshow that a1 = a2, it su�ces to show that 	ns1!s2 a1 = 	ns1!s2 a2, for all n 2 !. From the aboveinduction, we know that 	ns1!s2 a1 and 	ns1!s2 a2 are denotable. Furthermore, for all denotablea0 2 As1 , (	ns1!s2 a1) a0 = 	ns2(a1(	ns1 a0)) = 	ns2 (a2(	ns1 a0)) = (	ns1!s2 a2) a0:Thus, by the obvious semantic restatement of theorem 4.3 (iii), 	ns1!s2 a1 = 	ns1!s2 a2, as required.Order-extensionality under the additional hypothesis that A is inequationally fully abstract fol-lows similarly, using theorem 4.3 (ii). 2Theorem 5.7 (Milner/Berry) Extensional, equationally fully abstract models are syntacticallySFP and inductively reachable.Proof. Adapted from theorem 3.6.18 of [Ber]. Let A be such a model, which is syntactically SFPby lemma 5.5. Clearly, all elements of A� are denotable. Suppose that s = s1 ! � � � ! sn ! �, forn � 1, is such that all isolated elements of each Asi are denotable. Suppose, toward a contradiction,that there is a non-denotable isolated element a of As. Let n 2 ! be such that 	n a = a. De�ne apre-ordering � over As by: a � a0 i� a a1 � � � an v� a0 a1 � � � an, for all ai 2 Asi . Let X be the setof all denotable elements of f	n a0 j a0 2 As g, X+ = fx 2 X j a � x g and X� = X �X+.Let �1; : : : ; �p be the elements of X�; here p � 1, since ? 2 X�. Then, for all 1 � i � p, thereexist isolated wij 2 Asj and zi 2 ! such that awi1 � � � win = zi and �iwi1 � � � win 6= zi. Let W ij beterms denoting the wij , and let Q of sort s! � be�x: (Andp(Stz1 (xW 11 � � � W 1n)) � � � (Stzp (xW p1 � � � W pn))):There are now two cases to consider:(X+ is nonempty) Suppose that x1 and x2 are elements of X+ that are denoted by terms X1and X2, respectively. Let X3 = 	n(Inf X1X2) and x3 be the meaning of X3. A bit of work thenshows that x3 is a �-lower bound of x1 = 	n x1 and x2 = 	n x2, and that a = 	n a � x3, i.e.,x3 2 X+. Thus we can conclude that there is a �-least element  of X+. There exist isolated9



ui 2 Asi and v 2 ! such that a u1 � � � un = ? and  u1 � � � un = v. Let Ui be terms denoting the ui,and de�ne terms M1 and M2 of sort s! � byM1 = �x: (Q(	n x));M2 = �x: (And2(Q(	n x))(Stv (	n xU1 � � � Un))):Then the meaning of M1 applied to a is 1, whereas the meaning of M2 applied to a is ?. Onthe other hand, we can use theorem 4.3 (iii) to show that M1 �cs!� M2. But this contradicts theequational full abstraction of A.(X+ is empty) Similar to the nonempty case, with M1 de�ned as before and M2 = 
. 2Since all objects of E are inductively reachable (theorem 5.7), it follows that E is a pre-ordering.Lemma 5.8 If A is an equationally fully abstract model then �A is a least �xed point ordering.Proof. Immediate from lemma 3.3. 2Theorem 5.9 If A is an extensional, equationally fully abstract model then it is order-isomorphicto M(�A).Proof. Let B =M(�A) and i be the unique continuous homomorphism from B to A. By theorem5.7, A is inductively reachable, and thus it su�ces to show that i is an order-embedding. Supposethat is b1 vs is b2. Then, for all n 2 !,is(	n b1) = 	n(is b1) vs 	n(is b2) = is(	n b2):But 	n b1 and 	n b2 are denotable, and thus 	n b1 vs 	n b2. Thus b1 vs b2, since B is syntacticallySFP. 2Proposition 5.10 Suppose A and B are extensional, equationally fully abstract models. If �A ��B, then there is a unique morphism from A to B. If there is a morphism from A to B, then�A � �B.Proof. The �rst part follows from theorems 5.9 and 5.4, and the second part is obvious. 2Corollary 5.11 E and L are equivalent categories.Proof. Immediate from theorems 5.4, 5.6 and 5.9 and proposition 5.10. 2From the above results, we know that M(�0) and M(<�c) are the initial and terminal objects,respectively, of E. It is easy to see that M(�0) is also initial in the category of (not necessarilyextensional) equationally fully abstract models and their morphisms. M(<�c) is the only object of Ethat is order-extensional, since models that are order-extensional, SFP and whose isolated elementsare all denotable are easily seen to be inequationally fully abstract. Another fact about M(<�c) isthat its carrier is consistently complete; it is unknown whether there are other objects of E withconsistently complete carriers. Another obvious open question is whether M(�0) and M(<�c) arethe only objects of E. 10



AcknowledgmentsConversations with Albert Meyer and Gordon Plotkin stimulated my attempts to show that equa-tional and inequational full abstraction were distinct for PCF.References[Ber] G. Berry. Mod�eles compl�etement ad�equats et stables des lambda-calculs typ�es. Th�ese deDoctorat d'Etat, Universit�e Paris VII, 1979.[BerCurL�ev] G. Berry, P.-L. Curien and J.-J. L�evy. Full abstraction for sequential languages: thestate of the art. In M. Nivat and J. Reynolds (editors), Algebraic Methods in Semantics,Cambridge University Press, 1985.[Cur] P.-L. Curien. Categorical combinators, sequential algorithms and functional program-ming. Research Notes in Theoretical Computer Science, Pitman/Wiley, 1986.[Mey] A. Meyer and S. Cosmadakis. Semantical paradigms: notes for an invited lecture. Proc.3rd LICS, 1988.[Mil] R. Milner. Fully abstract models of typed �-calculi. Theoretical Computer Science 4,1977.[Plo] G. Plotkin. LCF considered as a programming language. Theoretical Computer Science5, 1977.[Sto] A. Stoughton. Fully Abstract Models of Programming Languages. Research Notes inTheoretical Computer Science, Pitman/Wiley, 1988.

11


