
Kripke: a Countermodel Checker forIntuitionistic Propositional LogicChristian HaackDepartment of Computing and Information SciencesKansas State University234 Nichols HallManhattan, Kansas 66506, U.S.A.haack@cis.ksu.eduOctober 22, 1996The �le \kripke.sml" contains an ML-program that generates a Unix executable.The generated executable takes in a Kripke-tree and a sequent of propositionalformulas and decides whether the Kripke-tree is a countermodel to the sequent,i.e. whether its root forces all assumptions of the sequent but not the conclusion.As another option it annotates the nodes of the tree with all forced subformulasof formulas that appear in the sequent. A third option �nds a maximal nodethat forces all assumptions of the sequent but not the conclusion, if such a nodeexists. Finally, there is an option that lists all maximal nodes of that kind.How to execute the executableLet's assume you have called the generated executable kripke. In order toexecute it type a command of the following format:% kripke [option]... filename sequentPossible options are:
1

-m --minimal use minimal logic-c --check check whether the tree's root forces the sequent'sassumptions but not its conclusion (default)-a --annotate annotate tree with forced subformulas-f --find �nd a maximal node that forces assumptions butnot conclusion-l --list list all maximal nodes that force assumptions butnot conclusion-h --help output help information and exitThe sequent is of the formformula, ..., formula => formulaEach formula is a propositional formula built up using parentheses, whitespace,propositional variables and the following symbols:f (falsity)~ (negation) highest precedence& (conjunction) . right associative| (disjunction) . right associative-> (implication) . right associative<-> (biimplication) lowest precedence right associativeA propositional variable is a nonempty string of lower case letters, upper caseletters and digits whose �rst character is either an upper case letter or a digit.�lename is the name of a �le that contains a labeled tree. A labeled tree isrepresented by a sequence of blank and non-blank lines. Each non-blank linerepresents a node of the labeled tree and is of the following form:name : f varList gThe name of the node is a nonempty string of lower case letters, upper caseletters and digits. varList is a possibly empty list of propositional variablesseparated by commas. In connection with the option --minimal the falsitysymbol f is also a legal element of a varList. Each line can be indented. Theindentation level is used to indicate how two nodes that are represented byadjacent lines are related.For each natural number n we de�ne sets Tree(n) and Forest(n) of sequencesof lines of the above format. Tree(n) will contain labeled trees where the linerepresenting the root is indented to column n. Forest(n) will contain forests oflabeled trees where each line representing a root is indented to column n. Thesesets are de�ned inductively by the following rules:1. () 2 Forest(n), for each natural number n.2

Figure 1: A labeled tree2:fPg1:fg3:fg0:fg2. If (k1; ::; ks) 2 Forest(n) and (l1; ::; lr) 2 Tree(n) then (k1; ::; ks; l1; ::; lr) 2Forest(n), for each natural number n.3. If l is a line indented to column n, m > n and (k1; ::; kr) 2 Forest(m) then(k1; ::; kr; l) 2 Tree(n), for all natural numbers n and m.Now, a labeled tree is a sequence of lines such that when neglecting all blanklines the resulting sequence of lines is an element of Tree(n) for some naturalnumber n. From the inductive de�nition it is clear how such a sequence of linesrepresents a tree whose nodes are labeled with sets of propositional variables.The representation mapping that maps every such sequence of lines to a labeledtree is given in the obvious recursive way. The labeled tree that is obtained isnot a Kripke-tree yet, because there might be nodes whose labeling sets do notinclude the labeling sets of all their ancestors. However, the labeling sets canbe extended to obtain a Kripke-tree by adding to the labeling set of each nodethe labeling sets of all of its ancestors.ExamplesFigures 1 and 2 show labeled trees. The sequence of lines in �gure 3 is not alabeled tree because of improper indentation. Figures 4 and 5 show the Kripke-trees represented by the labeled trees from �gures 1 and 2. Figures 6, 7, 8, 9,11 and 12 show example responses to di�erent invocations of kripke. In thoseexamples fig1, fig2 and fig10 are names of �les that contain the trees from�gures 1, 2 and 10, respectively.
3

Figure 2: A labeled treeaaaa:fRgaaa:fQgaa:fPg abaa:fQgaba:fRgab:fPgaca:fQ,Rgac:fPga:fgFigure 3: Not a labeled treec:fg b:fga:fgFigure 4: The Kripke-tree represented by �gure 112 0 3P
Figure 5: The Kripke-tree represented by �gure 2PP,Q PP,RP,Q,R PP,Q,RP,Q,R ababaabaa acacaaaa aaaaaaa

4

Figure 6: The check option (default)% kripke fig1 " => (~~P -> P) | ~P | ~~P "The assumptions of the sequent hold in the model but the conclusion does not.[0.010 sec user cpu time (0.010 sec non-gc, 0.000 sec gc)]Figure 7: The annotate option% kripke -a fig1 " => (~~P -> P) | ~P | ~~P "3: { ~P,~P | ~~P,(~~P -> P) | ~P | ~~P,~~P -> P }2: { P,~~P,~P | ~~P,(~~P -> P) | ~P | ~~P,~~P -> P }1: { ~~P,~P | ~~P,(~~P -> P) | ~P | ~~P }0: { }The assumptions of the sequent hold in the model but the conclusion does not.[0.010 sec user cpu time (0.010 sec non-gc, 0.000 sec gc)]Figure 8: The �nd option% kripke -f fig2 " (P -> Q) -> R => (P -> ~~Q) -> R "Node "ab" forces all assumptions but not the conclusion.[0.000 sec user cpu time (0.000 sec non-gc, 0.000 sec gc)]Figure 9: The list option% kripke -l fig2 " (P -> Q) -> R => (P -> ~~Q) -> R "Node(s) "ab", "ac" force(s) all assumptions but not the conclusion.[0.000 sec user cpu time (0.000 sec non-gc, 0.000 sec gc)]5

Figure 10: A representation of a Kripke-tree for minimal logic1:ff,Pg0:fgFigure 11: The minimal option% kripke -m fig10 " ~~P -> ~~Q => ~~(P -> Q) "The assumptions of the sequent hold in the model but the conclusion does not.[0.000 sec user cpu time (0.000 sec non-gc, 0.000 sec gc)]Figure 12: The minimal option in connection with the annotate option% kripke -m -a fig10 " ~~P -> ~~Q => ~~(P -> Q) "1: { f,P,~P,~Q,~~P,~~Q,~~(P -> Q),~(P -> Q),~~P -> ~~Q }0: { ~P,~Q,~(P -> Q),~~P -> ~~Q }The assumptions of the sequent hold in the model but the conclusion does not.[0.020 sec user cpu time (0.020 sec non-gc, 0.000 sec gc)]6

