
EasyCrypt’s Relational Hoare Logic and

Noninterference

These slides are an example-based introduction to EasyCrypt’s
Relational Hoare Logic, focusing on how it can be used to prove
noninterference results.

The EasyCrypt tactics for Relational Hoare Logic are motivated
by the ones we’ve studied in class, but are different in some key
ways.

1 / 64

First Example

Let’s start with this simple program:

module M1 = {
var x : int (* private *)
var y : int (* public *)
proc f() : unit = {

x <- y;
}

}.

EasyCrypt doesn’t have a way of saying whether module
variables or inputs/outputs to procedures should be considered to
be “public” or “private”, but in this and the subsequent examples,
we’ll note this using comments.

2 / 64

First Example

We can state the noninterference lemma for

module M1 = {
var x : int (* private *)
var y : int (* public *)
proc f() : unit = {

x <- y;
}

}.

as a Relational Hoare quadruple, as follows:

lemma lem1 :
equiv [M1.f ~ M1.f : M1.y{1} = M1.y{2} ==> M1.y{1} = M1.y{2}].

In this notation, the two programs (identical, when stating
noninterference), are separated by a tilde. They are followed by the
pre- and postconditions, in which we use the notation {1} or {2} to
say which memory we want a variable or expression to be
interpreted in.

3 / 64

First Example

So in

lemma lem1 :
equiv [M1.f ~ M1.f : M1.y{1} = M1.y{2} ==> M1.y{1} = M1.y{2}].

we are saying that if the values of the public variable M1.y in the
two memories are equal before running M1.f, that either both
executions of M1.f fail to terminate (which does not happen in
this case), or they both terminate, and the values of M1.y in the
resulting memories are equal.

4 / 64

First Example

When we prove this lemma, we are initially presented with the goal

Type variables: <none>

--
pre = ={M1.y}

M1.f ~ M1.f

post = ={M1.y}

Note that M1.y{1} = M1.y{2} has been abbreviated to ={M1.y}. We
can use such abbreviations ourselves, writing, e.g.,

={x, y}

instead of

x{1} = x{2} /\ y{1} = y{2}.

This only works with variables, not expressions.
5 / 64

First Example

As in Hoare logic, we start by running the tactic

proc.

to transform our goal

Type variables: <none>

--
pre = ={M1.y}

M1.f ~ M1.f

post = ={M1.y}

into

6 / 64

First Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M1.y}

(1) M1.x <- M1.y

post = ={M1.y}

Here the programs are in sync, and so are only listed once. &1 and
&2 are how the memories of the two programs are named. For this
goal, we can run

wp.

which in Relational Hoare Logic pushes the possibly nested
conditionals and assignments at the ends of the two programs into
the postcondition, giving us the goal

7 / 64

First Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M1.y}

post = ={M1.y}

Note that the postcondition did not change, because there were no
ocurrences of the left-hand-side of the assignment in the
postcondition.

From here, just as in Hoare Logic, we can run

skip.

which gives us the goal
8 / 64

First Example

Type variables: <none>

--
forall &1 &2, ={M1.y} => ={M1.y}

The conclusion of this goal is the Ambient Logic formula saying
that for all memories &1 (of the first program) and &2 (of the
second program), that if the values of M1.y in the two memories
(M1.y{1} and M1.y{2}) are equal, that the values of M1.y in the two
memories are equal. This can be proved by running

trivial.

9 / 64

First Example

Just as in Hoare Logic, we can abbreviate the proof of our lemma
to

lemma lem1 :
equiv [M1.f ~ M1.f : M1.y{1} = M1.y{2} ==> M1.y{1} = M1.y{2}].

proof.
proc; wp; skip; trivial.
qed.

And also like in Hoare Logic, the tactic auto tries to use wp, skip
and trivial to solve a goal, and we can in fact abbreviate our
proof to

lemma lem1 :
equiv [M1.f ~ M1.f : M1.y{1} = M1.y{2} ==> M1.y{1} = M1.y{2}].

proof.
proc; auto.
qed.

10 / 64

Second Example

For our second example, consider the program

module M2 = {
var x : int (* private *)
var y : int (* public *)
proc f() : unit = {

y <- x;
}

}.

Here we’ve swapped x and y in the assignment, so if we try to
prove

lemma lem2 :
equiv [M2.f ~ M2.f : ={M2.y} ==> ={M2.y}].

proof.
proc; wp; skip.

we are given the goal

11 / 64

Second Example

Type variables: <none>

--
&1 (left) : {}
&2 (right) : {}

pre = Z.b{1} /\ !Z.b{2}

if (Z.b) { (1--) if (Z.b) {
Z.x <- 1 (1.1) Z.x <- 2

} else { (1--) } else {
Z.x <- 2 (1?1) Z.x <- 1

} (1--) }

post = ={Z.x}

This goal cannot be solved, as knowing that the values in the two
memories of M2.y are equal is of no help in concluding that the
values in the two memories of M2.x are equal.

We can thus run

abort. 12 / 64

Third Example

Consider the following program and proof beginning

module M3 = {
var x : int (* private *)
var y : int (* public *)
proc f() : unit = {

y <- x;
y <- 5;

}
}.

lemma lem3 :
equiv [M3.f ~ M3.f : ={M3.y} ==> ={M3.y}].

proof.
proc.

which take us to the goal

13 / 64

Third Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M3.y}

(1) M3.y <- M3.x
(2) M3.y <- 5

post = ={M3.y}

Running

wp.

then takes us to the goal

14 / 64

Third Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M3.y}

post = 5 = 5

(Note how the first assignment has no effect on the postcondition,
because wp applied it after M3.y{1} and M3.y{2} had been replaced
by 5.) This goal can be solved by running

auto.

15 / 64

Fourth Example

As our fourth example, consider the program and proof beginning

module M4 = {
var x : int (* private *)
var y : int (* public *)
proc f() : unit = {

if (y %% 3 = 0) {
x <- 0;

}
else {
x <- 1;

}
}

}.

and

lemma lem4 :
equiv [M4.f ~ M4.f : ={M4.y} ==> ={M4.y}].

proof.
proc.

which takes us to the goal
16 / 64

Fourth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M4.y}

(1--) if (M4.y %% 3 = 0) {
(1.1) M4.x <- 0
(1--) } else {
(1?1) M4.x <- 1
(1--) }

post = ={M4.y}

Because both programs begin with conditionals (equal in our case),
we can apply the two-sided if tactic

if.

which gives us three subgoals
17 / 64

Fourth Example

Type variables: <none>

--
forall &1 &2,
={M4.y} =>
M4.y{1} %% 3 = 0 <=> M4.y{2} %% 3 = 0

(which makes us prove that the boolean expression of the first
program’s conditional holds in the first program’s memory
if-and-only-if the boolean expression of the second program’s
conditional holds in the second program’s memory; in our case, the
conditionals and so their boolean expressions are the same, of
course) and

18 / 64

Fourth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M4.y} /\ M4.y{1} %% 3 = 0

(1) M4.x <- 0

post = ={M4.y}

(for the then branch—if the conditionals of the two programs were
different, we’d have the then branch of the first conditional on the
left, and the then branch of the second conditional on the right,
followed in each case by whatever came after the conditional in the
two programs) and

19 / 64

Fourth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M4.y} /\ M4.y{1} %% 3 <> 0

(1) M4.x <- 1

post = ={M4.y}

(for the else branch—again, if the programs were not
synchronized we’d have a pair of else branches, followed by
whatever followed in the two programs). The second and third
subgoals follow easily because M4.x does not appear in the
postconditions (which are equal).

20 / 64

Fifth Example

On the other hand, suppose we modify the previous example so
that we branch on whether the private variable x is divisible by 3,
and set the public variable y instead of x:

module M5 = {
var x : int (* private *)
var y : int (* public *)
proc f() : unit = {

if (x %% 3 = 0) {
y <- 0;

}
else {
y <- 1;

}
}

}.

21 / 64

Fifth Example

Then, the proof beginning

lemma lem5 :
equiv [M5.f ~ M5.f : ={M5.y} ==> ={M5.y}].

proof.
proc; if.

takes us to the three subgoals

Type variables: <none>

--
forall &1 &2,
={M5.y} =>
M5.x{1} %% 3 = 0 <=> M5.x{2} %% 3 = 0

and

22 / 64

Fifth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M5.y} /\ M5.x{1} %% 3 = 0

(1) M5.y <- 0

post = ={M5.y}

and

23 / 64

Fifth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M5.y} /\ M5.x{1} %% 3 <> 0

(1) M5.y <- 1

post = ={M5.y}

Because we don’t know that the values of the private M5.x in the
two memories are related in any way, we can’t complete this proof.
(There is a one-sided if tactic, which we’ll see in the next
example. But it won’t help either.)

24 / 64

Sixth Example

For our sixth example, consider the program

require import List.

module M6 = {
var i : int (* public *)
var xs : int list (* public *)
var ys : int list (* private *)
var r : bool (* private *)

proc f() : unit = {
i <- 0;
r <- false;
while (i < 10) {
if (! (nth 0 xs i = nth 1 ys i)) {

r <- true;
}
i <- i + 1;

}
}

}.

25 / 64

Sixth Example

Here we have imported the theory List from the EasyCrypt
Library, so that the type int list consists of all finite lists of
integers. We do list subscripting using the operator nth: nth def

xs i,

• returns the ith (counting from 0) element of xs, if i is at least
0 and is strictly less than the number of elements in xs; and

• returns the default element def, otherwise.

For example:

• the value of nth 6 [1; 2; 3] 1 is 2;

• the value of nth 6 [1; 2; 3] (-1) is 6;

• the value of nth 6 [1; 2; 3] 3 is 6.

26 / 64

Sixth Example

Because the default values supplied to nth in

while (i < 10) {
if (! (nth 0 xs i = nth 1 ys i)) {

r <- true;
}
i <- i + 1;

}

are different but might also appear in the lists, r can be set to
true for the first time because

• we reach a point where i is a good index for both xs and ys,
but the ith elements of xs and ys are different;

• we reach a point where i is a bad index for both xs and ys;

• we reach a point where i is a good index for xs and a bad
index for ys, but the ith element of xs is not 1;

• we reach a point where i is a bad index for xs and a good
index for ys, but the ith element of ys is not 0.

27 / 64

Sixth Example

Let’s prove the lemma

lemma lem6 :
equiv [M6.f ~ M6.f : ={M6.i, M6.xs} ==> ={M6.i, M6.xs} /\ P].

where the operator P is defined by

op P (x : bool * bool) : bool = true.

and is only included in the postcondition so as to help illustrate
how the while tactic works. After running

proc.

we are at goal

28 / 64

Sixth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M6.i, M6.xs}

(1----) M6.i <- 0
(2----) M6.r <- false
(3----) while (M6.i < 10) {
(3.1--) if (nth 0 M6.xs
(-) M6.i <>
(-) nth 1 M6.ys
(-) M6.i) {
(3.1.1) M6.r <- true
(3.1--) }
(3.2--) M6.i <- M6.i + 1
(3----) }

post = ={M6.i, M6.xs} /\ P (M6.r{1}, M6.r{2})

29 / 64

Sixth Example

It’s then convenient (but not necessary) to use the two-sided
version of the seq tactic, which takes two arguments: the number
of statements to take from the beginning of the left and right
programs, respectively.

E.g., running

seq 2 2 : (={M6.i, M6.xs}).
auto.

takes us to the goal

30 / 64

Sixth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M6.i, M6.xs}

(1----) while (M6.i < 10) {
(1.1--) if (nth 0 M6.xs
(-) M6.i <>
(-) nth 1 M6.ys
(-) M6.i) {
(1.1.1) M6.r <- true
(1.1--) }
(1.2--) M6.i <- M6.i + 1
(1----) }

post = ={M6.i, M6.xs} /\ P (M6.r{1}, M6.r{2})

31 / 64

Sixth Example

Because both programs (they are in sync) end with while loops,
we can apply the while tactic, choosing a loop invariant

while (={M6.i, M6.xs}).

saying that the values of the public variables M6.i and M6.xs stay
equal in the two memories. This gives us the subgoals

32 / 64

Sixth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre =
={M6.i, M6.xs} /\ M6.i{1} < 10 /\ M6.i{2} < 10

(1--) if (nth 0 M6.xs
(-) M6.i <>
(-) nth 1 M6.ys
(-) M6.i) {
(1.1) M6.r <- true
(1--) }
(2--) M6.i <- M6.i + 1

post =
={M6.i, M6.xs} /\
(M6.i{1} < 10 <=> M6.i{2} < 10)

(goal 1—preservation of loop invariant) and
33 / 64

Sixth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M6.i, M6.xs}

post =
(={M6.i, M6.xs} /\
(M6.i{1} < 10 <=> M6.i{2} < 10)) /\

forall (i_L : int) (r_L : bool) (i_R : int)
(r_R : bool),
! i_L < 10 =>
! i_R < 10 =>
i_L = i_R /\ ={M6.xs} =>
(i_L = i_R /\ ={M6.xs}) /\ P (r_L, r_R)

(goal 2—connection of loop with pre- and postconditions).

34 / 64

Sixth Example

Let’s consider goal 2, first. After we run

skip.

we have the goal

Type variables: <none>

--
forall &1 &2,
={M6.i, M6.xs} =>
(={M6.i, M6.xs} /\
(M6.i{1} < 10 <=> M6.i{2} < 10)) /\

forall (i_L : int) (r_L : bool) (i_R : int)
(r_R : bool),
! i_L < 10 =>
! i_R < 10 =>
i_L = i_R /\ ={M6.xs} =>
(i_L = i_R /\ ={M6.xs}) /\ P (r_L, r_R)

35 / 64

Sixth Example

The conclusion of this goal makes us prove two conjuncts, given
the knowledge that the loop’s precondition holds on the two
memories. The first conjunct is

(={M6.i, M6.xs} /\ (M6.i{1} < 10 <=> M6.i{2} < 10))

In words, we have to show that the loop invariant is true at the
beginning of the loop’s execution, and that the boolean expression
M6.i < 10 is either true in both memories or false in both
memories.

36 / 64

Sixth Example

The second conjunct is

forall (i_L : int) (r_L : bool) (i_R : int) (r_R : bool),
! i_L < 10 => ! i_R < 10 =>
i_L = i_R /\ ={M6.xs} =>
(i_L = i_R /\ ={M6.xs}) /\ P (r_L, r_R)

It quantifies over the variables that change during the execution of
the loop:

• M6.i{1}, which is turned into i_L;

• M6.i{2}, which is turned into i_R;

• M6.r{1}, which is turned into r_L; and

• M6.r{2}, which is turned into r_R.

(If we’d left out the conjunct P (r{1}, r{2}) from the overall
postcondition, EasyCrypt would have simplified away the entire
second conjunct, making it easier to prove but harder to
understand!)

37 / 64

Sixth Example

When proving this second conjunct, we are given the knowledge
that the boolean expression of the loop is false in both memories,
but that the loop invariant holds. We then have to prove the
postcondition of the loop.

38 / 64

Sixth Example

Now, let’s go back to the first subgoal:

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre =
={M6.i, M6.xs} /\ M6.i{1} < 10 /\ M6.i{2} < 10

(1--) if (nth 0 M6.xs
(-) M6.i <>
(-) nth 1 M6.ys
(-) M6.i) {
(1.1) M6.r <- true
(1--) }
(2--) M6.i <- M6.i + 1

post =
={M6.i, M6.xs} /\
(M6.i{1} < 10 <=> M6.i{2} < 10)

39 / 64

Sixth Example

The pre- and postconditions both include the loop invariant.

In addition, the precondition tells us that the boolean expression
holds in both memories (if the left and right programs were
different while loops, we’d have that the left loop’s boolean
expression held in the first memory, and the right loop’s boolean
expression held in the second memory).

In the postcondition, we also have to prove that the left loop’s
boolean expression holds in the first memory if-and-only-if the right
loop’s boolean expression holds in the second memory.

40 / 64

Sixth Example

Because the boolean expression of the conditional depends upon
the possibly different values of the private variable M6.ys in the
two memories, we can’t use the two-sided if tactic. Instead we
have to use its one-sided versions, which are applicable when the
given program (one/left or two/right) begins with a conditional.

Running

if{1}.

give us two subgoals where the second (right) program is
unchanged. In the first subgoal, we are given the additional
assumption (just about memory one) that

nth 0 M6.xs{1} M6.i{1} <> nth 1 M6.ys{1} M6.i{1}

and the left program becomes

M6.r <- true; (* the then branch *)
M6.i <- M6.i + 1; (* what follows the conditional *)

41 / 64

Sixth Example

In the second subgoal, we are given the additional assumption
(again about memory one) that

! (nth 0 M6.xs{1} M6.i{1} <> nth 1 M6.ys{1} M6.i{1})

and the left program becomes

(* the else branch - empty! *)
M6.i <- M6.i + 1; (* what follows the conditional *)

In both of these subgoals, we must run the one-sided if tactic on
the right program (program two)

if{2}.

All four of the resulting goals can then be solved using auto.

42 / 64

Sixth Example

For example, the third of these goals is (some of what
EasyCrypt prints has been elided so it fits on the slide!):

pre =
((={M6.i, M6.xs} /\ M6.i{1} < 10 /\ M6.i{2} < 10) /\
! nth 0 M6.xs{1} M6.i{1} <> nth 1 M6.ys{1} M6.i{1}) /\

nth 0 M6.xs{2} M6.i{2} <> nth 1 M6.ys{2} M6.i{2}

M6.i <- (1) M6.r <-
M6.i + () true
1 ()

(2) M6.i <-
() M6.i +
() 1

post = ={M6.i, M6.xs} /\ (M6.i{1} < 10 <=> M6.i{2} < 10)

Here we have the else (empty) branch of the conditional of the
left program, but the then branch of the conditional of the right
program—because we’re in the goal where the boolean expression
was false in the first memory, but true in the second memory.

43 / 64

Sixth Example

Going back again to the goal

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre =
={M6.i, M6.xs} /\ M6.i{1} < 10 /\ M6.i{2} < 10

(1--) if (nth 0 M6.xs
(-) M6.i <>
(-) nth 1 M6.ys
(-) M6.i) {
(1.1) M6.r <- true
(1--) }
(2--) M6.i <- M6.i + 1

post =
={M6.i, M6.xs} /\
(M6.i{1} < 10 <=> M6.i{2} < 10)

44 / 64

Sixth Example

it’s worth noting that in Relational Hoare Logic, wp is capable of
pushing possibly nested conditionals and assignments at the ends
of the two programs into the postcondition. Running

wp.

transforms our goal into a goal with postcondition

45 / 64

Sixth Example

if nth 0 M6.xs{2} M6.i{2} <> nth 1 M6.ys{2} M6.i{2} then
let i_R = M6.i{2} + 1 in
(if nth 0 M6.xs{1} M6.i{1} <> nth 1 M6.ys{1} M6.i{1} then

let i_L = M6.i{1} + 1 in
(i_L = i_R /\ ={M6.xs}) /\ (i_L < 10 <=> i_R < 10)

else
let i_L = M6.i{1} + 1 in
(i_L = i_R /\ ={M6.xs}) /\ (i_L < 10 <=> i_R < 10))

else
let i_R = M6.i{2} + 1 in
(if nth 0 M6.xs{1} M6.i{1} <> nth 1 M6.ys{1} M6.i{1} then

let i_L = M6.i{1} + 1 in
(i_L = i_R /\ ={M6.xs}) /\ (i_L < 10 <=> i_R < 10)

else
let i_L = M6.i{1} + 1 in
(i_L = i_R /\ ={M6.xs}) /\ (i_L < 10 <=> i_R < 10))

This goal can be solved with

skip; trivial.

so we could actually solve the original goal with auto.
46 / 64

Sixth Example

If we only want to prove noninterference, we can get rid of the use
of P in the postcondition:

lemma lem :
equiv [M6.f ~ M6.f : ={M6.i, M6.xs} ==> ={M6.i, M6.xs}].

Furthermore, because our program ends with a while loop, and
the proof of the first subgoal generated by the while tactic
doesn’t actually depend on xs being the same in the two
memories, we can begin our proof like this:

proc.
while (={M6.i}).

This gives us the goals

47 / 64

Sixth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M6.i} /\ M6.i{1} < 10 /\ M6.i{2} < 10

(1--) if (nth 0 M6.xs
(-) M6.i <>
(-) nth 1 M6.ys
(-) M6.i) {
(1.1) M6.r <- true
(1--) }
(2--) M6.i <- M6.i + 1

post = ={M6.i} /\ (M6.i{1} < 10 <=> M6.i{2} < 10)

(which can be solved with auto) and

48 / 64

Sixth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M6.i, M6.xs}

(1) M6.i <- 0
(2) M6.r <- false

post =
(={M6.i} /\ (M6.i{1} < 10 <=> M6.i{2} < 10)) /\
forall (i_L i_R : int),

! i_L < 10 =>
! i_R < 10 =>
i_L = i_R => i_L = i_R /\ ={M6.xs}

(which can also be solved by auto, because the occurrence of
={M6.xs} in the postcondition is assumed in the precondition).

49 / 64

Sixth Example

Thus our lemma and its proof can be:

lemma lem :
equiv [M6.f ~ M6.f : ={M6.i, M6.xs} ==> ={M6.i, M6.xs}].

proof.
proc; while (={M6.i}); auto.
qed.

50 / 64

Seventh Example

Now, let’s take our sixth example and restructure it so

• the lists xs (public) and ys (private) are arguments to the
procedure M7.f; and

• the variables that are initialized without reference to the
arguments—i (public) and r (private)—are returned as the
procedure’s result;

Because neither xs nor ys are modified, we don’t return them.

51 / 64

Seventh Example

So our program is now

module M7 = {
proc f(xs : int list, (* public *)

ys : int list) (* private *)
: int * (* i’s value - public *)

bool = { (* r’s value - private *)
var i : int; (* public *)
var r : bool; (* private *)
i <- 0;
r <- false;
while (i < 10) {
if (! (nth 0 xs i = nth 1 ys i)) {

r <- true;
}
i <- i + 1;

}
return (i, r);

}
}.

52 / 64

Seventh Example

And our noninterference lemma and proof are:

lemma lem7 :
equiv [M7.f ~ M7.f : ={xs} ==> res{1}.‘1 = res{2}.‘1].
(* the second character of .‘ is the backtick character *)

proof.
proc; while (={i}); auto.
qed.

53 / 64

The sp tactic and Optional Arguments to wp and sp

Like in Hoare Logic, the sp tactic in Relational Hoare Logic will
push possibly nested conditionals involving assignments at the
beginning of both programs into the precondition.
Furthermore, both wp and sp optionally take a pair of natural
number arguments, pertaining to the left and right programs,
respectively. E.g.,

sp 1 2.

will try to push the first statement of the left program and the first
two statements of the right program into the precondition, failing
if either is not possible.

54 / 64

The case and exfalso Tactics

As with Hoare Logic, Relational Hoare Logic has the case and
exfalso tactics, which work analogously, except that their
arguments are now formulas that can mention variables of both
memories.

55 / 64

The rcondt and rcondf Tactics

Furthermore, Relational Hoare Logic also has the rcondt and
rcondf tactics, which apply to both conditionals and while loops.
But unlike in Hoare Logic, these tactics must be annotated with
the side (left or right program) they should be applied to.

56 / 64

The rcondt and rcondf Tactics

For example, consider the module

module Z = {
var b : bool
var x : int
proc f() : unit = {

if (b) {
x <- 1;

}
else {
x <- 2;

}
}
proc g() : unit = {

if (b) {
x <- 2;

}
else {
x <- 1;

}
}

}.
57 / 64

The rcondt and rcondf Tactics

We can start proof of the following lemma as indicated:

lemma Z :
equiv [Z.f ~ Z.g : Z.b{1} /\ ! Z.b{2} ==> Z.x{1} = Z.x{2}].

proof.
proc.

This gives us the goal:

58 / 64

The rcondt and rcondf Tactics

Type variables: <none>

--
&1 (left) : {}
&2 (right) : {}

pre = Z.b{1} /\ !Z.b{2}

if (Z.b) { (1--) if (Z.b) {
Z.x <- 1 (1.1) Z.x <- 2

} else { (1--) } else {
Z.x <- 2 (1?1) Z.x <- 1

} (1--) }

post = ={Z.x}

Then, running the tactic

rcondt{1} 1.

gives us two goals.
59 / 64

The rcondt and rcondf Tactics

The first is

Type variables: <none>

--
forall &m,
hoare[<skip> : Z.b /\ !Z.b{m} ==> Z.b]

where &m stands for the memory of the second program, and the
<skip> indicates that there were no instructions before the
indicated conditional.
Running the tactic

move => &m.

gives us the goal

60 / 64

The rcondt and rcondf Tactics

Type variables: <none>

&m: {}
--
Context : {}

pre = Z.b /\ !Z.b{m}

post = Z.b

which can be solved by auto.

61 / 64

The rcondt and rcondf Tactics

The second goal produced by rcondt is:

Type variables: <none>

--
&1 (left) : {}
&2 (right) : {}

pre = Z.b{1} /\ !Z.b{2}

Z.x <- 1 (1--) if (Z.b) {
(1.1) Z.x <- 2
(1--) } else {
(1?1) Z.x <- 1
(1--) }

post = ={Z.x}

Then, running the tactic

rcondf{2} 1.

gives us the goals
62 / 64

The rcondt and rcondf Tactics

Type variables: <none>

--
forall &m,
hoare[<skip> : Z.b{m} /\ !Z.b ==> !Z.b]

(which can be solved by auto) and

63 / 64

The rcondt and rcondf Tactics

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = Z.b{1} /\ !Z.b{2}

(1) Z.x <- 1

post = ={Z.x}

(which can also be solved by auto).

64 / 64

