
Using EasyCrypt’s Probabilistic Hoare Logic,

Probabilistic Relational Hoare Logic and ambient logic

in Conjunction

These slides are an example-based introduction to EasyCrypt’s
Probabilistic Hoare Logic (pHL) and how this logic can be used in
conjunction with EasyCrypt’s Probabilistic Relational Hoare
Logic (pRHL) and ambient logic.

phL lets us bound the probability that running a procedure
terminates in a memory satifying some event (predicate).

Many of the tactics of pHL work similarly to those of
EasyCrypt’s Hoare Logic (experiment!), and so we’ll focus on
the differences.

1 / 37



Examples

We start our examples (see phl-prhl.ec) with

require import AllCore Distr DBool StdOrder.
import RealOrder.

Distr has definitions and lemmas about sub-distributions, DBool
has the distribution {0,1} on bool that assigns both true and
false weight one-half, StdOrder has lemmas about orderings (<,
<=), and we import its sub-theory RealOrder which has lemmas
about orderings on real.

The name {0,1} is misleading, as the elements of type bool are
not 0 and 1, and it suggests one can also write, e.g., {1,0}, which
is not correct.

2 / 37



First Example

Our first example is concerned with the modules

module M = {
proc f() : bool = {

var b : bool;
b <$ {0,1};
return b;

}
}.
module N = {
proc f() : bool = {

var b1, b2 : bool;
b1 <$ {0,1}; b2 <$ {0,1};
return b1 ^ b2; (* exclusive or *)

}
}.

M.f returns a random boolean, whereas N.f returns the exclusive
or of two random booleans.

3 / 37



First Example

Using the approach we have already studied, one can prove this
pRHL judgement:

lemma M_N_equiv :
equiv [M.f ~ N.f : true ==> ={res}].

proof.
proc.
seq 0 1 : true.
rnd{2}.
auto.
rnd (fun x => x ^ b1{2}).
auto; smt().
qed.

Note that EasyCrypt automatically recognizes that {0,1} is
lossless, and so this proof doesn’t have to explicitly invoke the
lemma dbool_ll from DBool.

4 / 37



First Example

Now we can use M_N_equiv to prove that, no matter what
memory, &m, they are started in (M and N have no global variables,
so using different memories will have the same effect), M.f and
N.f are equally likely to return true.

lemma M_N_true &m :
Pr[M.f() @ &m : res] = Pr[N.f() @ &m : res].

This form is recognized by the ambient logic tactic byequiv.

5 / 37



First Example

Running the tactic

byequiv (_ : true ==> ={res}).

in goal

Type variables: <none>

&m: {}
--------------------------------------------
Pr[M.f() @ &m : res] = Pr[N.f() @ &m : res]

results in three subgoals, the first of which is

6 / 37



First Example

Type variables: <none>

&m: {}
--------------------------------------------
pre = true

M.f ~ N.f

post = ={res}

and which we can solve with

apply M_N_equiv.

The second subgoal can be solved with trivial, as it makes us
prove that the precondition of this pRHL judgement is established.
And the third subgoal is

7 / 37



First Example

Type variables: <none>

&m: {}
--------------------------------------------
forall &1 &2, ={res} => res{1} <=> res{2}

This makes us prove that the postcondition of the pRHL
judgement implies that the two events, res, of

Pr[M.f() @ &m : res] = Pr[N.f() @ &m : res]

are in an iff relationship in their respective memories. We can also
solve this goal using trivial.

8 / 37



First Example

If we use byequiv with no argument, it defaults to the argument
we supplied, and we can also explicitly tell it which lemma to use:

lemma M_N_true’ &m :
Pr[M.f() @ &m : res] = Pr[N.f() @ &m : res].

proof.
byequiv => //.
apply M_N_equiv.
qed.

lemma M_N_true’’ &m :
Pr[M.f() @ &m : res] = Pr[N.f() @ &m : res].

proof.
by byequiv M_N_equiv.
qed.

9 / 37



First Example

Furthermore, we can use the same approach to prove that M.f and
N.f are equally likely to return false:

lemma M_N_false &m :
Pr[M.f() @ &m : !res] = Pr[N.f() @ &m : !res].

proof.
by byequiv M_N_equiv.
qed.

10 / 37



First Example

Next, we might want to prove that M.f returns true exactly half
the time:

lemma M_true &m :
Pr[M.f() @ &m : res] = 1%r / 2%r.

The conclusion of this goal can be handled by the byphoare
ambient logic tactic.

Running

byphoare (_ : true ==> res)

transforms the goal

Type variables: <none>

&m: {}
--------------------------------------------
Pr[M.f() @ &m : res] = 1%r / 2%r

11 / 37



First Example

into three sub-goals, the first of which is

Type variables: <none>

&m: {}
--------------------------------------------
pre = true

M.f
[=] 1%r / 2%r

post = res

The conclusion of this goal is a pHL judgement. This looks like a
Hoare Logic judgement, except there is also a bound—in this case
equality with 1%r / 2%r. The meaning of this judgement is that
running M.f in a memory satisfying the precondition true (and so
any memory) terminates in a memory in which the result (res) is
true exactly half the time.

12 / 37



First Example

The second subgoal is to show that the precondition of this pHL
judgement is established, and the third is so show that its
postcondition is equivalent to the event (res) of the Pr formula.
Both can be solved by trivial.

To solve the first subgoal, we first run proc, giving us the subgoal

Type variables: <none>

&m: {}
--------------------------------------------
Context : {b : bool}
Bound : [=] 1%r / 2%r

pre = true

(1) b <$ {0,1}

post = b

13 / 37



First Example

Next, we need to push this random assignment into the
postcondition using the rnd tactic, which takes an optional
argument, a predicate on the boolean being sampled. To figure out
the appropriate predicate, try starting with the predicate pred0,
which is true of no booleans. In this case, the correct argument is

rnd (pred1 true).

Running this, gives us the goal

14 / 37



First Example

Type variables: <none>

&m: {}
--------------------------------------------
Context : {b : bool}
Bound : [=] 1%r

pre = true /\ true

post =
mu1 {0,1} true = 1%r / 2%r &&
forall (v : bool),

v \in {0,1} => pred1 true v <=> v

Note that the residual bound is now [=] 1%r. We can solve this
goal by running

skip; progress.
smt(dbool1E). smt(). smt().

15 / 37



First Example

Here is a more succinct version of M_true:

lemma M_true’ &m :
Pr[M.f() @ &m : res] = 1%r / 2%r.

proof.
byphoare => //.
proc.
rnd (pred1 true).
auto; smt(dbool1E).
qed.

And then we can prove:

lemma N_true &m :
Pr[N.f() @ &m : res] = 1%r / 2%r.

proof.
by rewrite -(M_N_true &m) (M_true &m).
qed.

16 / 37



First Example

Alternatively, we can prove N_true directly. We start with

lemma N_true’ &m :
Pr[N.f() @ &m : res] = 1%r / 2%r.

proof.
byphoare => //.
proc.

which takes us to the goal

Type variables: <none>

&m: {}
--------------------------------------------
Context : {b1, b2 : bool}
Bound : [=] 1%r / 2%r

pre = true

(1) b1 <$ {0,1}
(2) b2 <$ {0,1}

post = b1 ^ b2
17 / 37



First Example

To continue, we want to use the seq tactic to split the program
after the first random assignment. In pHL, this tactic takes four
additional arguments in comparison to the version of Hoare Logic.
The defaults for these additional arguments do not work for our
purposes.

We will run

seq 1 :
b1 (* intermediate condition (IC) *)
(1%r / 2%r) (* (a) *)
(1%r / 2%r) (* (b) *)
(1%r / 2%r) (* (c) *)
(1%r / 2%r). (* (d) *)

18 / 37



First Example

Here our intermediate condition (IC) is that b1 holds, i.e., b1 was
assigned true. The next four arguments are probabilities, which
we’ve labeled (a)–(d). (a) is the probability that if we run the first
random assignment starting from a memory satisfying the
precondition (true), that we’ll terminate in a memory satisfying
IC. (b) is the probability that running the second random
assignment from a memory satisfying IC will terminate in a
memory satisfing the postcondition b1 ^ b2. (c) is like (a), except
it’s for when the resulting memory satisfies the negation of IC. And
(d) is like (b), except it’s for when the starting point for running
the second random assignment is a memory satisfying the negation
of IC.

19 / 37



First Example

Running the above seq gives us six subgoals. The conclusion of
the first subgoal is a Hoare Logic judgement with postcondition
true, and can thus be solved with auto. This first subgoal is only
non-trivial if yet another optional argument is supplied to seq.

20 / 37



First Example

The second subgoal is:

Type variables: <none>

&m: {}
--------------------------------------------
Context : {b1, b2 : bool}
Bound : [=] 1%r / 2%r

pre = true

(1) b1 <$ {0,1}

post = b1

Here the bound is (a), and we can solve this goal with

rnd (pred1 true).
skip; progress.
smt(dbool1E). smt(). smt().

21 / 37



First Example

The third subgoal is:

Type variables: <none>

&m: {}
--------------------------------------------
Context : {b1, b2 : bool}
Bound : [=] 1%r / 2%r

pre = b1

(1) b2 <$ {0,1}

post = b1 ^ b2

Here the bound is (b), and we can solve this goal with

rnd (pred1 false).
skip; progress.
smt(dbool1E). smt(). smt(). smt().

22 / 37



First Example

The fourth subgoal is:

Type variables: <none>

&m: {}
--------------------------------------------
Context : {b1, b2 : bool}
Bound : [=] 1%r / 2%r

pre = true

(1) b1 <$ {0,1}

post = !b1

Here the bound is (c), and we can solve this goal with

rnd (pred1 false).
skip; progress.
smt(dbool1E). smt(). smt().

23 / 37



First Example

The fifth subgoal is:

Type variables: <none>

&m: {}
--------------------------------------------
Context : {b1, b2 : bool}
Bound : [=] 1%r / 2%r

pre = !b1

(1) b2 <$ {0,1}

post = b1 ^ b2

Here the bound is (d), and we can solve this goal with

rnd (pred1 true).
skip; progress.
smt(dbool1E). smt(). smt(). smt().

24 / 37



First Example

And the sixth and final subgoal is:

Type variables: <none>

&m: {}
--------------------------------------------
forall _, true => 1%r / 2%r = 1%r / 2%r

The right side of this implication is EasyCrypt’s simplification of

(a) * (b) + (c) * (d) = 1%r / 2%r

The first part of the sum is the probability that we get to a
memory satisfying the postcondition via IC, and the second part is
that we get there via the negation of IC. We are asked to prove
that the sum of these two possibilities is the bound of the lemma.
We can solve goal this using trivial.

25 / 37



Second Example

Our second example is concerned with the modules

module P = {
proc f(b : bool) : bool = {

var b’ : bool;
b’ <$ {0,1};
return b /\ b’;

}
}.

module Q = {
proc f(b : bool) : bool = {

var b’ : bool;
b’ <$ {0,1};
return b /\ !b’;

}
}.

Note that both P.f and Q.f take a boolean parameter, b. And
note the negation in the value returned by Q.f.

26 / 37



Second Example

And this time we prove a pRHL judgement where the pre- and
postconditions involve left-to-right implications on the parameters
and results, respectively:

lemma P_Q_equiv :
equiv [P.f ~ Q.f : b{1} => b{2} ==> res{1} => res{2}].

proof.
proc.
rnd (fun x => ! x).
auto; smt().
qed.

From P_Q_equiv we can prove the folowing lemma, beginning
with the expected move:

lemma P_Q_leq (b1 b2 : bool) &m :
(b1 => b2) =>
Pr[P.f(b1) @ &m : res] <= Pr[Q.f(b2) @ &m : res].

proof.
move => b1_imply_b2.

27 / 37



Second Example

This takes to goal

Type variables: <none>

b1: bool
b2: bool
&m: {}
b1_imply_b2: b1 => b2
--------------------------------------------
Pr[P.f(b1) @ &m : res] <= Pr[Q.f(b2) @ &m : res]

And its conclusion (an inequality of Pr[...] expressions for a pair
of procedures) is also a form that byequiv can handle. Running

byequiv P_Q_equiv.

gives us the following two goals, both of which can be solved with
trivial.

28 / 37



Second Example

Type variables: <none>

b1: bool
b2: bool
&m: {}
b1_imply_b2: b1 => b2
--------------------------------------------
b1 => b2

and

Type variables: <none>

b1: bool
b2: bool
&m: {}
b1_imply_b2: b1 => b2
--------------------------------------------
forall &1 &2,
(res{1} => res{2}) => res{1} => res{2}

29 / 37



Second Example

To prove

lemma Q_true &m :
Pr[Q.f(true) @ &m : res] = 1%r / 2%r.

proof.
byphoare (_ : b ==> res).

the default lemma chosen by byphoare won’t suffice. Instead we
must use the above one, which produces three goals, the first of
which is the following (confusingly with arg instead of b)

Type variables: <none>

&m: {}
--------------------------------------------
pre = arg

Q.f
[=] 1%r / 2%r

post = res

30 / 37



Second Example

Running proc takes us to

Type variables: <none>

&m: {}
--------------------------------------------
Context : {b, b’ : bool}
Bound : [=] 1%r / 2%r

pre = b

(1) b’ <$ {0,1}

post = b /\ !b’

which we can solve with

rnd (pred1 false).
auto; smt(dbool1E).

31 / 37



Second Example

The second and third goals pertain to the pre- and postconditions,
but EasyCrypt has already simplified them. For the precondition
we must show that the argument (true) to Q.f in the lemma’s
statement is provable. For the postcondition, we must show an iff
relationship between the event of the lemma’s statement and the
postcondition.

32 / 37



Second Example

The conclusion of the following lemma is also supported by
byphoare.

lemma Q_leq (b_ : bool) &m :
Pr[Q.f(b_) @ &m : res] <= 1%r / 2%r.

proof.
byphoare => //.

This takes us to the goal

Type variables: <none>

b_: bool
&m: {}
--------------------------------------------
pre = true

Q.f
[<=] 1%r / 2%r

post = res

33 / 37



Second Example

Running proc takes us to

Type variables: <none>

b_: bool
&m: {}
--------------------------------------------
Context : {b, b’ : bool}
Bound : [<=] 1%r / 2%r

pre = true

(1) b’ <$ {0,1}

post = b /\ !b’

From here, we can run

rnd (pred1 false).

which takes us to the goal
34 / 37



Second Example

Type variables: <none>

b_: bool
&m: {}
--------------------------------------------
Context : {b, b’ : bool}

pre = true /\ true

post =
mu1 {0,1} false <= 1%r / 2%r &&
forall (v : bool),

v \in {0,1} => b /\ !v => pred1 false v

Note that this is a Hoare Logic (not pHL) judgement. Also note
that the first conjunct of the postcondition is now an inequality,
and also note the order of the implication in the second conjunct.

35 / 37



Second Example

The understand the goal pertaining to the postcondition in the
preceding example, we can consider this nonsensical modification
of it:

op Z1 : bool. op Z2 : bool.

lemma Q_leq_bad (b_ : bool) &m :
Pr[Q.f(b_) @ &m : Z1] <= 1%r / 2%r.

proof.
byphoare (_ : true ==> Z2).

The third subgoal produced by this is

Type variables: <none>

b_: bool
&m: {}
--------------------------------------------
forall _, Z1 => Z2

36 / 37



Second Example

Finally, we can combine P_Q_leq and Q_leq, getting:

lemma P_leq (b_ : bool) &m :
Pr[P.f(b_) @ &m : res] <= 1%r / 2%r.

proof.
rewrite (ler_trans Pr[Q.f(b_) @ &m : res]).
by rewrite P_Q_leq.
rewrite Q_leq.
qed.

37 / 37


