
Abstraction, Actors and Computers

Allen Stoughton

Department of Computing and Information Sciences

Kansas State University

1



Introduction

I will argue that, depending upon the abstractions used, and how

the abstractions are interpreted, it is possible to think of what goes

on inside a single computer in radically different ways.

Under some viewpoints, a computer largely consists of passive data.

But in others, computers consist of many actors, which interact

with each other and the computer’s environment.

Different abstractions are useful for different purposes:

understanding and designing different levels or aspects of a

computer’s architecture.

We find it easier to understand and design entities that are, or that

we imagine to be, active.

2



Introduction

I will argue that, depending upon the abstractions used, and how

the abstractions are interpreted, it is possible to think of what goes

on inside a single computer in radically different ways.

Under some viewpoints, a computer largely consists of passive data.

But in others, computers consist of many actors, which interact

with each other and the computer’s environment.

Different abstractions are useful for different purposes:

understanding and designing different levels or aspects of a

computer’s architecture.

We find it easier to understand and design entities that are, or that

we imagine to be, active.

2-a



Introduction

I will argue that, depending upon the abstractions used, and how

the abstractions are interpreted, it is possible to think of what goes

on inside a single computer in radically different ways.

Under some viewpoints, a computer largely consists of passive data.

But in others, computers consist of many actors, which interact

with each other and the computer’s environment.

Different abstractions are useful for different purposes:

understanding and designing different levels or aspects of a

computer’s architecture.

We find it easier to understand and design entities that are, or that

we imagine to be, active.

2-b



Introduction

I will argue that, depending upon the abstractions used, and how

the abstractions are interpreted, it is possible to think of what goes

on inside a single computer in radically different ways.

Under some viewpoints, a computer largely consists of passive data.

But in others, computers consist of many actors, which interact

with each other and the computer’s environment.

Different abstractions are useful for different purposes:

understanding and designing different levels or aspects of a

computer’s architecture.

We find it easier to understand and design entities that are, or that

we imagine to be, active.

2-c



Introduction

I will argue that, depending upon the abstractions used, and how

the abstractions are interpreted, it is possible to think of what goes

on inside a single computer in radically different ways.

Under some viewpoints, a computer largely consists of passive data.

But in others, computers consist of many actors, which interact

with each other and the computer’s environment.

Different abstractions are useful for different purposes:

understanding and designing different levels or aspects of a

computer’s architecture.

We find it easier to understand and design entities that are, or that

we imagine to be, active.

2-d



Low-level Hardware Abstraction

3



Low-level Hardware Abstraction

4



Low-level Hardware Abstraction

5



Low-level Hardware Abstraction

6



Low-level Hardware Abstraction

7



High-level Hardware Abstraction

...

Program Counter

Memory

8



High-level Hardware Abstraction

...

Program Counter

Memory

9



High-level Hardware Abstraction

...

Program Counter

Memory

10



Machine Language Abstraction

11



Machine Language Abstraction

12



Machine Language Abstraction

13



Machine Language Abstraction

14



Machine Language Abstraction

15



High-level Abstraction

High-level

Programs

Compilation

Compiler

Machine-level

Programs

16



High-level Abstraction (Cont.)

fun factorial 0 = 1

| factorial n = n * factorial(n - 1)

factorial 3

→

3 * factorial 2

→

3 * (2 * factorial 1)

→

3 * (2 * (1 * factorial 0))

→

3 * (2 * (1 * 1))

→

6

17



High-level Abstraction (Cont.)

fun factorial 0 = 1

| factorial n = n * factorial(n - 1)

factorial 3

→ 3 * factorial 2

→

3 * (2 * factorial 1)

→

3 * (2 * (1 * factorial 0))

→

3 * (2 * (1 * 1))

→

6

17-a



High-level Abstraction (Cont.)

fun factorial 0 = 1

| factorial n = n * factorial(n - 1)

factorial 3

→ 3 * factorial 2

→ 3 * (2 * factorial 1)

→

3 * (2 * (1 * factorial 0))

→

3 * (2 * (1 * 1))

→

6

17-b



High-level Abstraction (Cont.)

fun factorial 0 = 1

| factorial n = n * factorial(n - 1)

factorial 3

→ 3 * factorial 2

→ 3 * (2 * factorial 1)

→ 3 * (2 * (1 * factorial 0))

→

3 * (2 * (1 * 1))

→

6

17-c



High-level Abstraction (Cont.)

fun factorial 0 = 1

| factorial n = n * factorial(n - 1)

factorial 3

→ 3 * factorial 2

→ 3 * (2 * factorial 1)

→ 3 * (2 * (1 * factorial 0))

→ 3 * (2 * (1 * 1))

→

6

17-d



High-level Abstraction (Cont.)

fun factorial 0 = 1

| factorial n = n * factorial(n - 1)

factorial 3

→ 3 * factorial 2

→ 3 * (2 * factorial 1)

→ 3 * (2 * (1 * factorial 0))

→ 3 * (2 * (1 * 1))

→ 6

17-e



Multiprogramming Abstraction

. . .Process Process Process

Operating

System

18



Multiprogramming Abstraction

. . .Process Process Process

Operating

System

19



Multiprogramming Abstraction

. . .Process Process Process

Operating

System

20



Multiprogramming Abstraction

. . .Process Process Process

Operating

System

21



Multiprogramming Abstraction

. . .Process Process Process

Operating

System

22



Multiprogramming Abstraction

. . .Process Process Process

Operating

System

23



Multiprogramming Abstraction

. . .Process Process Process

Operating

System

24



Multiprogramming Abstraction

. . .Process Process Process

Operating

System

25



Actors as Data

fun apply(x, []) = x

| apply(x, f :: fs) = apply(f x, fs)

apply(4, [fn x => x + 1, fn x => 2 * x, fn x => x * x])

→

apply(5, [fn x => 2 * x, fn x => x * x])

→

apply(10, [fn x => x * x])

→

apply(100, [])

→

100

26



Actors as Data

fun apply(x, []) = x

| apply(x, f :: fs) = apply(f x, fs)

apply(4, [fn x => x + 1, fn x => 2 * x, fn x => x * x])

→ apply(5, [fn x => 2 * x, fn x => x * x])

→

apply(10, [fn x => x * x])

→

apply(100, [])

→

100

26-a



Actors as Data

fun apply(x, []) = x

| apply(x, f :: fs) = apply(f x, fs)

apply(4, [fn x => x + 1, fn x => 2 * x, fn x => x * x])

→ apply(5, [fn x => 2 * x, fn x => x * x])

→ apply(10, [fn x => x * x])

→

apply(100, [])

→

100

26-b



Actors as Data

fun apply(x, []) = x

| apply(x, f :: fs) = apply(f x, fs)

apply(4, [fn x => x + 1, fn x => 2 * x, fn x => x * x])

→ apply(5, [fn x => 2 * x, fn x => x * x])

→ apply(10, [fn x => x * x])

→ apply(100, [])

→

100

26-c



Actors as Data

fun apply(x, []) = x

| apply(x, f :: fs) = apply(f x, fs)

apply(4, [fn x => x + 1, fn x => 2 * x, fn x => x * x])

→ apply(5, [fn x => 2 * x, fn x => x * x])

→ apply(10, [fn x => x * x])

→ apply(100, [])

→ 100

26-d



Software Architectures

There is no limit to the software architectures that can be created

within a computer.

Actors may create virtual environments in which which families of

actors interact.

Virtual environments can be nested in virtual environments.

27



Software Architectures

There is no limit to the software architectures that can be created

within a computer.

Actors may create virtual environments in which which families of

actors interact.

Virtual environments can be nested in virtual environments.

27-a



Software Architectures

There is no limit to the software architectures that can be created

within a computer.

Actors may create virtual environments in which which families of

actors interact.

Virtual environments can be nested in virtual environments.

27-b



Summary

Depending upon the abstractions being used, and how the

abstractions are interpreted, what goes on inside a single computer

can be thought of in radically different ways:

• single actor;

• many actors;

• actors as data;

• actors within actors.

Different points of view are necessary in order to get the

intellectual traction necessary to achieve certain goals.

Understanding all of this may help laypeople develop more useful

mental models of how computers work and what they are capable

of doing. It may also help workers in other disciplines recognize

similar phenomena at work in the systems they study or build.

28



Summary

Depending upon the abstractions being used, and how the

abstractions are interpreted, what goes on inside a single computer

can be thought of in radically different ways:

• single actor;

• many actors;

• actors as data;

• actors within actors.

Different points of view are necessary in order to get the

intellectual traction necessary to achieve certain goals.

Understanding all of this may help laypeople develop more useful

mental models of how computers work and what they are capable

of doing. It may also help workers in other disciplines recognize

similar phenomena at work in the systems they study or build.

28-a



Summary

Depending upon the abstractions being used, and how the

abstractions are interpreted, what goes on inside a single computer

can be thought of in radically different ways:

• single actor;

• many actors;

• actors as data;

• actors within actors.

Different points of view are necessary in order to get the

intellectual traction necessary to achieve certain goals.

Understanding all of this may help laypeople develop more useful

mental models of how computers work and what they are capable

of doing. It may also help workers in other disciplines recognize

similar phenomena at work in the systems they study or build.

28-b



Summary

Depending upon the abstractions being used, and how the

abstractions are interpreted, what goes on inside a single computer

can be thought of in radically different ways:

• single actor;

• many actors;

• actors as data;

• actors within actors.

Different points of view are necessary in order to get the

intellectual traction necessary to achieve certain goals.

Understanding all of this may help laypeople develop more useful

mental models of how computers work and what they are capable

of doing. It may also help workers in other disciplines recognize

similar phenomena at work in the systems they study or build.

28-c



Summary

Depending upon the abstractions being used, and how the

abstractions are interpreted, what goes on inside a single computer

can be thought of in radically different ways:

• single actor;

• many actors;

• actors as data;

• actors within actors.

Different points of view are necessary in order to get the

intellectual traction necessary to achieve certain goals.

Understanding all of this may help laypeople develop more useful

mental models of how computers work and what they are capable

of doing. It may also help workers in other disciplines recognize

similar phenomena at work in the systems they study or build.

28-d



Summary

Depending upon the abstractions being used, and how the

abstractions are interpreted, what goes on inside a single computer

can be thought of in radically different ways:

• single actor;

• many actors;

• actors as data;

• actors within actors.

Different points of view are necessary in order to get the

intellectual traction necessary to achieve certain goals.

Understanding all of this may help laypeople develop more useful

mental models of how computers work and what they are capable

of doing. It may also help workers in other disciplines recognize

similar phenomena at work in the systems they study or build.

28-e



Summary

Depending upon the abstractions being used, and how the

abstractions are interpreted, what goes on inside a single computer

can be thought of in radically different ways:

• single actor;

• many actors;

• actors as data;

• actors within actors.

Different points of view are necessary in order to get the

intellectual traction necessary to achieve certain goals.

Understanding all of this may help laypeople develop more useful

mental models of how computers work and what they are capable

of doing. It may also help workers in other disciplines recognize

similar phenomena at work in the systems they study or build.

28-f


