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Introduction

I will argue that, depending upon the abstractions used, and how

the abstractions are interpreted, it is possible to think of what goes

on inside a single computer in radically different ways.

Under some viewpoints, a computer largely consists of passive data.

But in others, computers consist of many actors, which interact

with each other and the computer’s environment.

Different abstractions are useful for different purposes:

understanding and designing different levels or aspects of a

computer’s architecture.

We find it easier to understand and design entities that are, or that

we imagine to be, active.
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Low-level Hardware Abstraction
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Machine Language Abstraction
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High-level Abstraction

High-level

Programs

Compilation

Compiler

Machine-level

Programs
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High-level Abstraction (Cont.)

fun factorial 0 = 1

| factorial n = n * factorial(n - 1)

factorial 3

→

3 * factorial 2

→

3 * (2 * factorial 1)

→

3 * (2 * (1 * factorial 0))

→

3 * (2 * (1 * 1))

→

6
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Multiprogramming Abstraction

. . .Process Process Process

Operating

System
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Actors as Data

fun apply(x, []) = x

| apply(x, f :: fs) = apply(f x, fs)

apply(4, [fn x => x + 1, fn x => 2 * x, fn x => x * x])

→

apply(5, [fn x => 2 * x, fn x => x * x])

→

apply(10, [fn x => x * x])

→

apply(100, [])

→

100
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Software Architectures

There is no limit to the software architectures that can be created

within a computer.

Actors may create virtual environments in which which families of

actors interact.

Virtual environments can be nested in virtual environments.
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Summary

Depending upon the abstractions being used, and how the

abstractions are interpreted, what goes on inside a single computer

can be thought of in radically different ways:

• single actor;

• many actors;

• actors as data;

• actors within actors.

Different points of view are necessary in order to get the

intellectual traction necessary to achieve certain goals.

Understanding all of this may help laypeople develop more useful

mental models of how computers work and what they are capable

of doing. It may also help workers in other disciplines recognize

similar phenomena at work in the systems they study or build.
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