
5.3: Diagonalization and Undecidable Problems

In this section, we will use a technique called diagonalization to
find a natural language that isn’t recursively enumerable.

This will lead us to a language that is recursively enumerable but is
not recursive.

It will also enable us to prove the undecidability of the halting
problem.

1 / 16

Diagonalization

To find a non-r.e. language, we can use diagonalization.

Let Σ be the alphabet used to describe programs: the letters and
digits, plus the elements of
{〈comma〉, 〈perc〉, 〈tilde〉, 〈openPar〉, 〈closPar〉, 〈less〉, 〈great〉}.

As explained in Section 5.1, every element of Σ∗ either describes a
unique closed program, or describes no closed programs.

2 / 16

Diagonalization

To find a non-r.e. language, we can use diagonalization.

Let Σ be the alphabet used to describe programs: the letters and
digits, plus the elements of
{〈comma〉, 〈perc〉, 〈tilde〉, 〈openPar〉, 〈closPar〉, 〈less〉, 〈great〉}.

As explained in Section 5.1, every element of Σ∗ either describes a
unique closed program, or describes no closed programs.

Given w ∈ Σ∗, we write L(w) for:

• ∅, if w doesn’t describe a closed program; and

• L(pr), where pr is the unique closed program described by w ,
if w does describe a closed program.

2 / 16

Diagonalization

To find a non-r.e. language, we can use diagonalization.

Let Σ be the alphabet used to describe programs: the letters and
digits, plus the elements of
{〈comma〉, 〈perc〉, 〈tilde〉, 〈openPar〉, 〈closPar〉, 〈less〉, 〈great〉}.

As explained in Section 5.1, every element of Σ∗ either describes a
unique closed program, or describes no closed programs.

Given w ∈ Σ∗, we write L(w) for:

• ∅, if w doesn’t describe a closed program; and

• L(pr), where pr is the unique closed program described by w ,
if w does describe a closed program.

Thus L(w) will always be a set of strings, even though it won’t
always be a language.

2 / 16

Diagonalization

Consider the infinite table of 0’s and 1’s in which both the rows
and the columns are indexed by the elements of Σ∗, listed in
ascending order according to our standard total ordering, and
where a cell (wn,wm) contains 1 iff wn ∈ L(wm), and contains 0 iff
wn 6∈ L(wm).

Each recursively enumerable language is L(wm) for some
(non-unique) m, but not all the L(wm) are languages.

3 / 16

Diagonalization

Here is how part of this table might look, where wi , wj and wk are
sample elements of Σ∗:

wk

1 1 0

0 0 1

0 1 1

wi wj wk· · · · · · · · · · · ·

.

.

.

.

.

.

.

.

.

.

.

.

wi

wj

We have that wi ∈ L(wj) and wj 6∈ L(wi).
4 / 16

Diagonalization

To define a non-r.e. Σ-language, we work our way down the
diagonal of the table, putting wn into our language just when cell
(wn,wn) of the table is 0, i.e., when wn 6∈ L(wn).

With our example table:

• L(wi) is not our language, since wi ∈ L(wi), but wi is not in
our language;

• L(wj) is not our language, since wj 6∈ L(wj), but wj is in our
language; and

• L(wk) is not our language, since wk ∈ L(wk), but wk is not in
our language.

In general, there is no n ∈ N such that L(wn) is our language.
Consequently our language is not recursively enumerable.

5 / 16

Diagonalization

We formalize the above ideas as follows. Define languages Ld (“d”
for “diagonal”) and La (“a” for “accepted”) by:

Ld = {w ∈ Σ∗ | w 6∈ L(w) }, and

La = {w ∈ Σ∗ | w ∈ L(w) }.

Thus Ld = Σ∗ − La.

We have that, for all w ∈ Σ∗, w ∈ La iff w ∈ L(pr), for some
closed program pr (which will be unique) described by w . (When
w doesn’t describe a closed program, L(w) = ∅.)

6 / 16

Diagonalization

Theorem 5.3.1
Ld is not recursively enumerable.

Proof. Suppose, toward a contradiction, that Ld is recursively
enumerable. Thus, there is a closed program pr such that
Ld = L(pr). Let w ∈ Σ∗ be the string describing pr . Thus
L(w) = L(pr) = Ld .

There are two cases to consider.

✷

7 / 16

Diagonalization

Theorem 5.3.1
Ld is not recursively enumerable.

Proof. Suppose, toward a contradiction, that Ld is recursively
enumerable. Thus, there is a closed program pr such that
Ld = L(pr). Let w ∈ Σ∗ be the string describing pr . Thus
L(w) = L(pr) = Ld .

There are two cases to consider.

• Suppose w ∈ Ld . Then w 6∈ L(w) = Ld—contradiction.

• Suppose w 6∈ Ld . Since w ∈ Σ∗, we have that
w ∈ L(w) = Ld—contradiction.

Since we obtained a contradiction in both cases, we have an
overall contradiction. Thus Ld is not recursively enumerable. ✷

7 / 16

Diagonalization

Theorem 5.3.2
La is recursively enumerable.

Proof. Let acc be the closed program that, when given str(w),
for some w ∈ Str, acts as follows.

✷

8 / 16

Diagonalization

Theorem 5.3.2
La is recursively enumerable.

Proof. Let acc be the closed program that, when given str(w),
for some w ∈ Str, acts as follows. First, it attempts to parse
str(w) as a program pr , represented as the value pr . If this
attempt fails, acc returns const(false).

✷

8 / 16

Diagonalization

Theorem 5.3.2
La is recursively enumerable.

Proof. Let acc be the closed program that, when given str(w),
for some w ∈ Str, acts as follows. First, it attempts to parse
str(w) as a program pr , represented as the value pr . If this
attempt fails, acc returns const(false). If pr is not closed, then
acc returns const(false).

✷

8 / 16

Diagonalization

Theorem 5.3.2
La is recursively enumerable.

Proof. Let acc be the closed program that, when given str(w),
for some w ∈ Str, acts as follows. First, it attempts to parse
str(w) as a program pr , represented as the value pr . If this
attempt fails, acc returns const(false). If pr is not closed, then
acc returns const(false). Otherwise, it uses our interpreter
function to evaluate app(pr , str(w)), using app(pr , str(w)). If this
interpretation returns const(true), then acc returns const(true). If
it returns anything other than const(true), then acc returns
const(false). (Thus, if the interpretation never returns, then acc

never terminates.)

✷

8 / 16

Diagonalization

Theorem 5.3.2
La is recursively enumerable.

Proof. Let acc be the closed program that, when given str(w),
for some w ∈ Str, acts as follows. First, it attempts to parse
str(w) as a program pr , represented as the value pr . If this
attempt fails, acc returns const(false). If pr is not closed, then
acc returns const(false). Otherwise, it uses our interpreter
function to evaluate app(pr , str(w)), using app(pr , str(w)). If this
interpretation returns const(true), then acc returns const(true). If
it returns anything other than const(true), then acc returns
const(false). (Thus, if the interpretation never returns, then acc

never terminates.)

We can check that, for all w ∈ Str, w ∈ La iff
eval(app(acc , str(w))) = norm(const(true)). Thus La is
recursively enumerable. ✷

8 / 16

Diagonalization

Corollary 5.3.3
There is an alphabet Σ and a recursively enumerable language

L ⊆ Σ∗ such that Σ∗ − L is not recursively enumerable.

Proof. La ⊆ Σ∗ is recursively enumerable, but Σ∗ − La = Ld is
not recursively enumerable. ✷

Corollary 5.3.4
There are recursively enumerable languages L1 and L2 such that

L1 − L2 is not recursively enumerable.

Proof. Follows from Corollary 5.3.3, since Σ∗ is recursively
enumerable. ✷

9 / 16

Diagonalization

Corollary 5.3.5
La is not recursive.

Proof.

10 / 16

Diagonalization

Corollary 5.3.5
La is not recursive.

Proof. Suppose, toward a contradiction, that La is recursive.
Since the recursive languages are closed under complementation,
and La ⊆ Σ∗, we have that Ld = Σ∗ − La is
recursive—contradiction. Thus La is not recursive. ✷

10 / 16

Relationship Between Our Sets of Languages

Since La ∈ RELan and La 6∈ RecLan, we have:

Theorem 5.3.6
The recursive languages are a proper subset of the recursively

enumerable languages: RecLan (RELan.

Combining this result with results from Sections 4.8 and 5.1, we
have that

RegLan (CFLan (RecLan (RELan (Lan.

11 / 16

Undecidability of the Halting Problem

We say that a closed program pr halts iff eval pr 6= nonterm.

Theorem 5.3.7
There is no value halts such that, for all closed programs pr ,

• If pr halts, then eval(app(halts, pr)) = norm(const(true));
and

• If pr does not halt, then

eval(app(halts, pr)) = norm(const(false)).

12 / 16

Undecidability of the Halting Problem

We say that a closed program pr halts iff eval pr 6= nonterm.

Theorem 5.3.7
There is no value halts such that, for all closed programs pr ,

• If pr halts, then eval(app(halts, pr)) = norm(const(true));
and

• If pr does not halt, then

eval(app(halts, pr)) = norm(const(false)).

Proof. Suppose, toward a contradiction, that such a halts does
exist. We use halts to construct a closed program acc that
behaves as follows when run on str(w), for some w ∈ Str. First, it
attempts to parse str(w) as a program pr , represented as the value
pr . If this attempt fails, it returns const(false). If pr is not closed,
then it returns const(false). Otherwise,

12 / 16

Undecidability of the Halting Problem

We say that a closed program pr halts iff eval pr 6= nonterm.

Theorem 5.3.7
There is no value halts such that, for all closed programs pr ,

• If pr halts, then eval(app(halts, pr)) = norm(const(true));
and

• If pr does not halt, then

eval(app(halts, pr)) = norm(const(false)).

Proof. Suppose, toward a contradiction, that such a halts does
exist. We use halts to construct a closed program acc that
behaves as follows when run on str(w), for some w ∈ Str. First, it
attempts to parse str(w) as a program pr , represented as the value
pr . If this attempt fails, it returns const(false). If pr is not closed,
then it returns const(false). Otherwise, it calls halts with
argument app(pr , str(w)).

12 / 16

Undecidability of the Halting Problem

Proof (cont.).

• If halts returns const(true) (so we know that app(pr , str(w))
halts), then acc

13 / 16

Undecidability of the Halting Problem

Proof (cont.).

• If halts returns const(true) (so we know that app(pr , str(w))
halts), then acc applies the interpreter function to
app(pr , str(w)), using it to evaluate app(pr , str(w)). If the
interpreter returns const(true), then acc returns const(true).
Otherwise, the interpreter returns some other value (maybe an
error indication), and acc returns const(false).

13 / 16

Undecidability of the Halting Problem

Proof (cont.).

• If halts returns const(true) (so we know that app(pr , str(w))
halts), then acc applies the interpreter function to
app(pr , str(w)), using it to evaluate app(pr , str(w)). If the
interpreter returns const(true), then acc returns const(true).
Otherwise, the interpreter returns some other value (maybe an
error indication), and acc returns const(false).

• Otherwise, halts returns const(false) (so we know that
app(pr , str(w)) does not halt), in which case acc returns
const(false).

13 / 16

Undecidability of the Halting Problem

Proof (cont.).

• If halts returns const(true) (so we know that app(pr , str(w))
halts), then acc applies the interpreter function to
app(pr , str(w)), using it to evaluate app(pr , str(w)). If the
interpreter returns const(true), then acc returns const(true).
Otherwise, the interpreter returns some other value (maybe an
error indication), and acc returns const(false).

• Otherwise, halts returns const(false) (so we know that
app(pr , str(w)) does not halt), in which case acc returns
const(false).

Now, we prove that acc is a string predicate program testing
whether a string is in La.

13 / 16

Undecidability of the Halting Problem

Proof (cont.).

• Suppose w ∈ La. Thus w ∈ L(pr), where pr is the unique
closed program described by w . Hence
eval(app(pr , str(w))) = norm(const(true)). It is easy to
show that eval(app(acc , str(w))) = norm(const(true)).

14 / 16

Undecidability of the Halting Problem

Proof (cont.).

• Suppose w ∈ La. Thus w ∈ L(pr), where pr is the unique
closed program described by w . Hence
eval(app(pr , str(w))) = norm(const(true)). It is easy to
show that eval(app(acc , str(w))) = norm(const(true)).

• Suppose w 6∈ La. If w 6∈ Σ∗, or w ∈ Σ∗ but w does not
describe a program, or w describes a program that isn’t
closed, then eval(app(acc , str(w))) = norm(const(false)).

14 / 16

Undecidability of the Halting Problem

Proof (cont.).

• Suppose w ∈ La. Thus w ∈ L(pr), where pr is the unique
closed program described by w . Hence
eval(app(pr , str(w))) = norm(const(true)). It is easy to
show that eval(app(acc , str(w))) = norm(const(true)).

• Suppose w 6∈ La. If w 6∈ Σ∗, or w ∈ Σ∗ but w does not
describe a program, or w describes a program that isn’t
closed, then eval(app(acc , str(w))) = norm(const(false)).
So, suppose w describes the closed program pr . Then
w 6∈ L(pr), i.e., eval(app(pr , str(w))) 6= norm(const(true)).
It is easy to show that
eval(app(acc , str(w))) = norm(const(false)).

14 / 16

Undecidability of the Halting Problem

Proof (cont.).

• Suppose w ∈ La. Thus w ∈ L(pr), where pr is the unique
closed program described by w . Hence
eval(app(pr , str(w))) = norm(const(true)). It is easy to
show that eval(app(acc , str(w))) = norm(const(true)).

• Suppose w 6∈ La. If w 6∈ Σ∗, or w ∈ Σ∗ but w does not
describe a program, or w describes a program that isn’t
closed, then eval(app(acc , str(w))) = norm(const(false)).
So, suppose w describes the closed program pr . Then
w 6∈ L(pr), i.e., eval(app(pr , str(w))) 6= norm(const(true)).
It is easy to show that
eval(app(acc , str(w))) = norm(const(false)).

Thus La is recursive—contradiction. Thus there is no such halt.
✷

14 / 16

Undecidability of the Halting Problem

We say that a value pr halts on a value pr ′ iff
eval(app(pr , pr ′)) 6= nonterm.

Corollary 5.3.8 (Undecidability of the Halting Problem)
There is no value haltsOn such that, for all values pr and pr ′:

• if pr halts on pr ′, then

eval(app(haltsOn,pair(pr , pr ′))) = norm(const(true)); and

• If pr does not halt on pr ′, then

eval(app(haltsOn,pair(pr , pr ′))) = norm(const(false)).

15 / 16

Undecidability of the Halting Problem

We say that a value pr halts on a value pr ′ iff
eval(app(pr , pr ′)) 6= nonterm.

Corollary 5.3.8 (Undecidability of the Halting Problem)
There is no value haltsOn such that, for all values pr and pr ′:

• if pr halts on pr ′, then

eval(app(haltsOn,pair(pr , pr ′))) = norm(const(true)); and

• If pr does not halt on pr ′, then

eval(app(haltsOn,pair(pr , pr ′))) = norm(const(false)).

Proof. Suppose, toward a contradiction, that such a haltsOn

exists. Let halts be the value that takes in a value pr representing
a closed program pr , and then returns the result of calling haltsOn

with pair(lam(x, pr), const(nil)). Then this value satisfies the
property of Theorem 5.3.7—contradiction. Thus such a haltsOn

does not exist. ✷

15 / 16

Other Undecidable Problems

Here are two other undecidable problems:

• Determining whether two grammars generate the same
language. (In contrast, we gave an algorithm for checking
whether two FAs are equivalent, and this algorithm can be
implemented as a program.)

• Determining whether a grammar is ambiguous.

16 / 16

