
5.2: Closure Properties of Recursive and Recursively

Enumerable Languages

In this section, we will see that the recursive and recursively
enumerable languages are closed under union, concatenation,
closure and intersection.

The recursive languages are also closed under set difference and
complementation.

In the next section, we will see that the recursively enumerable
languages are not closed under complementation or set difference.

On the other hand, we will see in this section that, if a language
and its complement are both r.e., then the language is recursive.

1 / 10



Closure Properties of Recursive Languages

Theorem 5.2.1
If L, L1 and L2 are recursive languages, then so are L1 ∪ L2, L1L2,

L∗, L1 ∩ L2 and L1 − L2.

Proof.

2 / 10



Closure Properties of Recursive Languages

Theorem 5.2.1
If L, L1 and L2 are recursive languages, then so are L1 ∪ L2, L1L2,

L∗, L1 ∩ L2 and L1 − L2.

Proof. Let’s consider the concatenation case as an example.
Since L1 and L2 are recursive languages, there are string predicate
programs pr1 and pr2 that test whether strings are in L1 and L2,
respectively.

2 / 10



Closure Properties of Recursive Languages

Proof (cont.). We write a program pr with form

lam(w,

letSimp(f1,

pr1,

letSimp(f2,

pr 2,

· · · ))),

which tests whether its input is an element of L1L2.

3 / 10



Closure Properties of Rec. Lan.

Proof (cont.). The elided part of pr generates all of the pairs of
strings (x1, x2) such that x1x2 is equal to the value of w. Then it
works though these pairs, one by one.

• Given such a pair (x1, x2), pr calls f1 with x1 to check whether
x1 ∈ L1. If the answer is const(false), then it goes on to the
next pair.

• Otherwise, it calls f2 with x2 to check whether x2 ∈ L2. If the
answer is const(false), then it goes on to the next pair.
Otherwise, it returns const(true).

• If pr runs out of pairs to check, then it returns const(false).

We can check that pr is a string predicate program testing whether
w ∈ L1L2. Thus L1L2 is recursive. ✷

4 / 10



Closure Properties of Rec. Lan.

Corollary 5.2.2
If Σ is an alphabet and L ⊆ Σ∗ is recursive, then so is Σ∗ − L.

Proof. Follows from Theorem 5.2.1, since Σ∗ is recursive. ✷

5 / 10



Closure Properties of Recursively Enumerable Languages

Theorem 5.2.2
If L, L1 and L2 are recursively enumerable languages, then so are

L1 ∪ L2, L1L2, L
∗ and L1 ∩ L2.

Proof. We consider the concatenation case as an example. Since
L1 and L2 are recursively enumerable, there are closed programs
pr 1 and pr 2 such that, for all w ∈ Str, w ∈ L1 iff
eval(app(pr 1, str(w))) = norm(const(true)), and for all w ∈ Str,
w ∈ L2 iff eval(app(pr 2, str(w))) = norm(const(true)).
(Remember that pr 1 and pr 2 may fail to terminate on some
inputs.)

6 / 10



Closure Properties of Recursively Enumerable Languages

Theorem 5.2.2
If L, L1 and L2 are recursively enumerable languages, then so are

L1 ∪ L2, L1L2, L
∗ and L1 ∩ L2.

Proof. We consider the concatenation case as an example. Since
L1 and L2 are recursively enumerable, there are closed programs
pr 1 and pr 2 such that, for all w ∈ Str, w ∈ L1 iff
eval(app(pr 1, str(w))) = norm(const(true)), and for all w ∈ Str,
w ∈ L2 iff eval(app(pr 2, str(w))) = norm(const(true)).
(Remember that pr 1 and pr 2 may fail to terminate on some
inputs.)

To show that L1L2 is recursively enumerable, we will construct a
closed program pr such that, for all w ∈ Str, w ∈ L1L2 iff
eval(app(pr , str(w))) = norm(const(true)).

6 / 10



Closure Properties of R.E. Lan.

Proof (cont.). When pr is called with str(w), for some w ∈ Str,
it behaves as follows. First, it generates all the pairs of strings
(x1, x2) such that w = x1x2. Let these pairs be
(x1,1, x2,1), . . . , (x1,n, x2,n).

7 / 10



Closure Properties of R.E. Lan.

Proof (cont.). When pr is called with str(w), for some w ∈ Str,
it behaves as follows. First, it generates all the pairs of strings
(x1, x2) such that w = x1x2. Let these pairs be
(x1,1, x2,1), . . . , (x1,n, x2,n). Now, pr uses our incremental

interpretation function to run a fixed number of steps of
app(pr 1, str(x1,i )) and app(pr 2, str(x2,i )) (working with

app(pr 1, str(x1,i )) and app(pr 2, str(x2,i ))), for all i ∈ [1 : n], and
then repeat this over and over again.

7 / 10



Closure Properties of R.E. Lan.

Proof (cont.). When pr is called with str(w), for some w ∈ Str,
it behaves as follows. First, it generates all the pairs of strings
(x1, x2) such that w = x1x2. Let these pairs be
(x1,1, x2,1), . . . , (x1,n, x2,n). Now, pr uses our incremental

interpretation function to run a fixed number of steps of
app(pr 1, str(x1,i )) and app(pr 2, str(x2,i )) (working with

app(pr 1, str(x1,i )) and app(pr 2, str(x2,i ))), for all i ∈ [1 : n], and
then repeat this over and over again.

• If, at some stage, the incremental interpretation of
app(pr1, str(x1,i)) returns const(true), then x1,i is marked as
being in L1.

• If, at some stage, the incremental interpretation of
app(pr2, str(x2,i)) returns const(true), then the x2,i is
marked as being in L2.

7 / 10



Closure Properties of R.E. Lan.

Proof (cont.).

• If, at some stage, the incremental interpretation of
app(pr1, str(x1,i)) returns something other than const(true),
then the i ’th pair is marked as discarded.

• If, at some stage, the incremental interpretation of
app(pr2, str(x2,i)) returns something other than const(true),
then the i ’th pair is marked as discarded.

• If, at some stage, x1,i is marked as in L1 and x2,i is marked as
in L2, then Q returns const(true).

• If, at some stage, there are no remaining pairs, then pr

returns const(false).

✷

8 / 10



Closure Properties of R.E. Lan.

Theorem 5.2.3
If Σ is an alphabet, L ⊆ Σ∗ is a recursively enumerable language,

and Σ∗ − L is recursively enumerable, then L is

9 / 10



Closure Properties of R.E. Lan.

Theorem 5.2.3
If Σ is an alphabet, L ⊆ Σ∗ is a recursively enumerable language,

and Σ∗ − L is recursively enumerable, then L is recursive.

9 / 10



Closure Properties of R.E. Lan.

Theorem 5.2.3
If Σ is an alphabet, L ⊆ Σ∗ is a recursively enumerable language,

and Σ∗ − L is recursively enumerable, then L is recursive.

Proof. Since L and Σ∗ − L are recursively enumerable languages,
there are closed programs pr1 and pr2 such that, for all w ∈ Str,
w ∈ L iff eval(app(pr 1, str(w))) = norm(const(true)), and for all
w ∈ Str, w ∈ Σ∗ − L iff
eval(app(pr 2, str(w))) = norm(const(true)).

9 / 10



Closure Properties of R.E. Lan.

Theorem 5.2.3
If Σ is an alphabet, L ⊆ Σ∗ is a recursively enumerable language,

and Σ∗ − L is recursively enumerable, then L is recursive.

Proof. Since L and Σ∗ − L are recursively enumerable languages,
there are closed programs pr1 and pr2 such that, for all w ∈ Str,
w ∈ L iff eval(app(pr 1, str(w))) = norm(const(true)), and for all
w ∈ Str, w ∈ Σ∗ − L iff
eval(app(pr 2, str(w))) = norm(const(true)).

We construct a string predicate program pr that tests whether its
input is in L. Given str(w), for w ∈ Str, pr proceeds as follows. If
w 6∈ Σ∗, then pr returns const(false). Otherwise,

9 / 10



Closure Properties of R.E. Lan.

Theorem 5.2.3
If Σ is an alphabet, L ⊆ Σ∗ is a recursively enumerable language,

and Σ∗ − L is recursively enumerable, then L is recursive.

Proof. Since L and Σ∗ − L are recursively enumerable languages,
there are closed programs pr1 and pr2 such that, for all w ∈ Str,
w ∈ L iff eval(app(pr 1, str(w))) = norm(const(true)), and for all
w ∈ Str, w ∈ Σ∗ − L iff
eval(app(pr 2, str(w))) = norm(const(true)).

We construct a string predicate program pr that tests whether its
input is in L. Given str(w), for w ∈ Str, pr proceeds as follows. If
w 6∈ Σ∗, then pr returns const(false). Otherwise, pr alternates
between incrementally interpreting app(pr 1, str(w)) (working with
app(pr 1, str(w))) and app(pr 2, str(w)) (working with
app(pr 2, str(w))).

9 / 10



Closure Properties of R.E. Lan.

Proof (cont.).

• If, at some stage, the first incremental interpretation returns
const(true), then pr returns const(true).

• If, at some stage, the second incremental interpretation
returns const(true), then pr returns

• If, at some stage, the first incremental interpretation returns
anything other than const(true), then pr returns

• If, at some stage, the second incremental interpretation
returns anything other than const(true), then pr returns

✷

10 / 10



Closure Properties of R.E. Lan.

Proof (cont.).

• If, at some stage, the first incremental interpretation returns
const(true), then pr returns const(true).

• If, at some stage, the second incremental interpretation
returns const(true), then pr returns const(false).

• If, at some stage, the first incremental interpretation returns
anything other than const(true), then pr returns

• If, at some stage, the second incremental interpretation
returns anything other than const(true), then pr returns

✷

10 / 10



Closure Properties of R.E. Lan.

Proof (cont.).

• If, at some stage, the first incremental interpretation returns
const(true), then pr returns const(true).

• If, at some stage, the second incremental interpretation
returns const(true), then pr returns const(false).

• If, at some stage, the first incremental interpretation returns
anything other than const(true), then pr returns
const(false).

• If, at some stage, the second incremental interpretation
returns anything other than const(true), then pr returns

✷

10 / 10



Closure Properties of R.E. Lan.

Proof (cont.).

• If, at some stage, the first incremental interpretation returns
const(true), then pr returns const(true).

• If, at some stage, the second incremental interpretation
returns const(true), then pr returns const(false).

• If, at some stage, the first incremental interpretation returns
anything other than const(true), then pr returns
const(false).

• If, at some stage, the second incremental interpretation
returns anything other than const(true), then pr returns
const(true).

✷

10 / 10


