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Languages

In this chapter, we will study a universal programming language,
which we will use to define the recursive and recursively
enumerable languages.
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In this chapter, we will study a universal programming language,
which we will use to define the recursive and recursively
enumerable languages.

We will see that:

• the context-free languages are a proper subset of the recursive
languages,

• the recursive languages are a proper subset of the recursively
enumerable languages, and

• there are languages that are not recursively enumerable.

Furthermore, we will learn that there are problems, like the halting
problem (the problem of determining whether a program halts
when run on a given input), that can’t be solved by programs.
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Introduction

Traditionally, one uses Turing machines for the universal
programming language. Turing machines are finite automata that
manipulate infinite tapes.

Turing machines are rather far-removed from conventional
programming languages, and are hard to build and reason about.
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Introduction

Traditionally, one uses Turing machines for the universal
programming language. Turing machines are finite automata that
manipulate infinite tapes.

Turing machines are rather far-removed from conventional
programming languages, and are hard to build and reason about.

Instead, we will work with a simple functional programming
language that has explicit support for formal language symbols and
strings.

This language will have the same power as Turing machines, but
will be much easier to program in and reason about than Turing
machines.
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5.1: Programs and Recursive and Recursively

Enumerable Languages

In this section, we introduce our functional programming language,
and then use it to define the recursive and recursively enumerable
languages.

In contrast to Standard ML, our programming language is
dynamically typed. I.e., all type errors happen at runtime; there is
no typechecking phase.
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5.1: Programs and Recursive and Recursively

Enumerable Languages

In this section, we introduce our functional programming language,
and then use it to define the recursive and recursively enumerable
languages.

In contrast to Standard ML, our programming language is
dynamically typed. I.e., all type errors happen at runtime; there is
no typechecking phase.

Programs are certain trees (see Section 1.3). The set of all
programs is defined via an inductive definition.

The details are in the book. In the slides, we’re going to simply
work with examples.

We write Prog for the (countably infinite) set of all programs.
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Example Program

For example, consider the program:

letSimp(equal,

lam(p,

calc(isZero,

calc(compare, var(p)))),

app(var(equal),

pair(str(0110), str(0110))))

The let expression declares the variable equal to be equal to the
anonymous function that takes in an argument p (which will have
to consist of a pair), and compares the components of p for
equality. The body of the let expression then applies equal to the
pair both of whose elements are the string 0110.

When executed, the program will evaluate to the boolean constant
const(true).
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Program Syntax

Lists and trees can be represented using pairs. E.g.,
pair(pr 1,pair(pr 2, const(nil))) represents the list with first
element pr 1 and second element pr2.

A program is closed when it has no free variables, i.e., all of its
variables are declared. We write CP for the set of all closed
programs.
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Program Syntax

Programs can also be described as strings over the alphabet
consisting of the letters and digits, plus the elements of
{〈comma〉, 〈perc〉, 〈tilde〉, 〈openPar〉, 〈closPar〉, 〈less〉, 〈great〉}.

For example, the program

calc(plus,pair(int(4), int(−5)))

which adds 4 and −5 together, is described by the string

calc〈openPar〉plus〈comma〉pair〈openPar〉int〈openPar〉4〈closPar〉

〈comma〉int〈openPar〉〈tilde〉5〈closPar〉〈closPar〉〈closPar〉.

Every program is described by a unique string, and every string
describes at most one program. (E.g., the string 〈comma〉〈closPar〉
doesn’t describe a program.)
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Programming Language Semantics

We write Val for the set of all elements of CP that are values, i.e.,
are completely evaluated: const(true), const(false), const(nil),
integers, symbols, strings, pairs both of whose sides are values, and
anonymous functions. E.g.,

pair(int(4),pair(int(4), str(0110)))

is a value.
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Programming Language Semantics

We write Val for the set of all elements of CP that are values, i.e.,
are completely evaluated: const(true), const(false), const(nil),
integers, symbols, strings, pairs both of whose sides are values, and
anonymous functions. E.g.,

pair(int(4),pair(int(4), str(0110)))

is a value.

Let Eval = {nonterm, error} ∪ {norm pr | pr ∈ Val }.

The book defines a mathematical function (not an algorithm)
eval ∈ CP→ Eval that tries to evaluate a closed program pr ,
returning:

• nonterm, if that evaluation never terminates,

• error, if that evaluation results in an error, and

• norm pr ′, if that evaluation results in the value pr ′.
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Programs in Forlan

The Prog module defines the abstract type (in the top-level
environment) prog of programs, along with a number of functions,
including:

val input : string -> prog

val output : string * prog -> unit

val height : prog -> int

val size : prog -> int

val equal : prog * prog -> bool

val evaluate : prog * int -> unit

val fromStr : str -> prog

val toStr : prog -> str
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Programs in Forlan

Suppose that we put the text

letSimp(equal,

lam(p,

calc(isZero,

calc(compare, var(p)))),

app(var(equal),

pair(str(0110), str(0110))))

in the file 5.1-equal-prog. Then we can proceed as follows.

- val pr = Prog.input "5.1-equal-prog";

val pr = - : prog

- Prog.height pr;

val it = 4 : int

- Prog.size pr;

val it = 10 : int
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Programs in Forlan

- Prog.evaluate(pr, 1);

intermediate result

"app(lam(p, calc(isZero, calc(compare, var(p)))),

pair(str(0110), str(0110)))"

val it = () : unit

- Prog.evaluate(pr, 2);

intermediate result

"calc(isZero,

calc(compare, pair(str(0110), str(0110))))"

val it = () : unit

- Prog.evaluate(pr, 3);

intermediate result "calc(isZero, int(0))"

val it = () : unit

- Prog.evaluate(pr, 4);

intermediate result "const(true)"

val it = () : unit
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Programs in Forlan

- Prog.evaluate(pr, 5);

terminated with value "const(true)"

val it = () : unit

- val x = Prog.toStr pr;

val x =

[-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,

-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,

-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,

-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-] : str

- Str.output("", x);

letSimp<openPar>equal<comma>lam<openPar>p<comma>calc

<openPar>isZero<comma>calc<openPar>compare<comma>var

<openPar>p<closPar><closPar><closPar><closPar><comma>a

pp<openPar>var<openPar>equal<closPar><comma>pair

<openPar>str<openPar>0110<closPar><comma>str<openPar>0

110<closPar><closPar><closPar><closPar>

val it = () : unit
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Programs in Forlan

- val pr’ = Prog.fromStr x;

val pr’ = - : prog

- Prog.equal(pr’, pr);

val it = true : bool

- Prog.fromStr(Str.fromString "foo");

illegal program

uncaught exception Error
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Programs in Forlan

- Prog.evaluate(Prog.fromString "lam(y, var(x))", 10);

program has free variables: "x"

uncaught exception Error

- val pr’’ = Prog.input "";

@ calc(plus, calc(compare, pair(int(3), int(4))))

@ .

val pr’’ = - : prog

- Prog.evaluate(pr’’, 10);

terminated with error "calc(plus, int(~1))"

val it = () : unit
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Graphical Editor for Program Trees

The Java program JForlan, can be used to view and edit program
trees. It can be invoked directly, or run via Forlan. See the Forlan
website for more information.
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Parsing in Our Language

We can write a function for parsing a program from a string, where
a program pr will be represented as a tree (built using pairs) value
pr . The parser returns const(nil) to indicate failure.

For example, we can have:

var(foo) = pair(str(var), str(foo)),

const(true) = pair(str(const), const(true)),

const(false) = pair(str(const), const(false)),

const(nil) = pair(str(const), const(nil)),

· · ·

cond(pr 1, pr2, pr 3) = pair(str(cond),pair(pr1,pair(pr 2, pr 3)))

· · ·

We can also test whether such a tree pr represents an element of
CP or Val.

15 / 30



Interpreters Written in Our Language

It is possible to write a function in our programming language that
acts as an interpreter.

• It takes in a value pr , representing a closed program pr .
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Interpreters Written in Our Language

It is possible to write a function in our programming language that
acts as an interpreter.

• It takes in a value pr , representing a closed program pr .

• It begins evaluating pr , using the representation pr .

• If this evaluation results in an error, then the interpreter
returns const(nil).

• Otherwise, if it results in a value pr ′ representing a value pr ′,
then it returns pr ′.

• Otherwise, it runs forever.

E.g., cond(const(true), const(false), const(nil)) evaluates to
const(false).
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Interpreters

We can also write a function in our programming language that
acts as an incremental interpreter.

• At each stage of its evaluation of a closed program, it carries
out some fixed number of steps of the evaluation.
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Interpreters

We can also write a function in our programming language that
acts as an incremental interpreter.

• At each stage of its evaluation of a closed program, it carries
out some fixed number of steps of the evaluation.

• If during the execution of those steps, an error is detected,
then it returns const(nil).

• Otherwise, if a value pr ′ representing a value pr ′ has been
produced, then it returns this value.

• But otherwise, it returns an anonymous function that when
called will continue this process.
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Total Programs and the Meaning of Programs

A string predicate program pr is a closed program such that, for all
strings w ,

eval(app(pr , str(w))) ∈ {norm(const(true)),norm(const(false))}.
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Total Programs and the Meaning of Programs

A string predicate program pr is a closed program such that, for all
strings w ,

eval(app(pr , str(w))) ∈ {norm(const(true)),norm(const(false))}.

A string w is accepted by a closed program pr iff
eval(app(pr , str(w))) = norm(const(true)).

We write L(pr ) for the set of all strings accepted by a closed
program pr . When this set is a language, then we refer to L(pr ) as
the language accepted by pr .

(E.g., if pr = lam(x, const(true)), then L(pr ) = Str, and so is not
a language.)
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Partially Checking for Acceptance in Forlan

The Prog module also includes:

val accepted : prog -> str * int -> unit

Let’s put in the file 5.1-zeros-ones-twos-prog the following
string predicate program, which tests whether a string is an
element of { 0n1n2n | n ∈ N }.

lam

(x,

letSimp(equal,

lam(p,

calc(isZero,

calc(compare, var(p)))),

letSimp(succ,

lam(n, calc(plus, pair(var(n), int(1)))),
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Checking for Acceptance in Forlan

letSimp

(count,

lam(a,

letRec(f, xs,

cond(calc(isNil, var(xs)),

pair(int(0), const(nil)),

cond(app(var(equal),

pair(calc(fst, var(xs)),

var(a))),

letSimp(res,

app(var(f),

calc(snd, var(xs))),

pair(app(var(succ),

calc(fst,

var(res))),

calc(snd, var(res)))),

pair(int(0), var(xs)))),

var(f))),
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Checking for Acceptance in Forlan

letSimp

(xs,

calc(strToSymList, var(x)),

letSimp

(zeros,

app(app(var(count), sym(0)), var(xs)),

letSimp

(ones,

app(app(var(count), sym(1)), calc(snd, var(zeros))),
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Checking for Acceptance in Forlan

letSimp

(twos,

app(app(var(count), sym(2)), calc(snd, var(ones))),

cond(calc(isNil, calc(snd, var(twos))),

cond(app(var(equal),

pair(calc(fst, var(zeros)),

calc(fst, var(ones)))),

app(var(equal),

pair(calc(fst, var(ones)),

calc(fst, var(twos)))),

const(false)),

const(false))))))))))
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Checking for Acceptance in Forlan

- val pr = Prog.input "5.1-zeros-ones-twos-prog";

val pr = - : prog

- val test = Prog.accepted pr;

val test = fn : str * int -> unit

- test(Str.fromString "000111222", 100);

unknown if accepted or rejected

val it = () : unit

- test(Str.fromString "000111222", 1000);

accepted

val it = () : unit

- test(Str.fromString "00011222", 1000);

rejected with false

val it = () : unit

- test(Str.fromString "0001112223", 1000);

rejected with false

val it = () : unit
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Checking for Acceptance in Forlan

- test(Str.fromString "020121", 1000);

rejected with false

val it = () : unit

- val pr = Prog.fromString "const(nil)";

val pr = - : prog

- Prog.accepted pr (Str.fromString "01", 1);

rejected not with false

val it = () : unit
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Recursive and Recursively Enumerable Languages

We say that a language L is:

• recursive iff L = L(pr ), for some string predicate program pr ;
and

• recursively enumerable (r.e.) iff L = L(pr ), for some closed
program pr .

We define

RecLan = {L ∈ Lan | L is recursive }, and

RELan = {L ∈ Lan | L is recursively enumerable }.
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Recursive and Recursively Enumerable Languages

We say that a language L is:

• recursive iff L = L(pr ), for some string predicate program pr ;
and

• recursively enumerable (r.e.) iff L = L(pr ), for some closed
program pr .

We define

RecLan = {L ∈ Lan | L is recursive }, and

RELan = {L ∈ Lan | L is recursively enumerable }.

Hence RecLan ⊆ RELan. Because CP is countably infinite, we
have that RecLan and RELan are countably infinite, so that
RELan ( Lan. Later we will see that RecLan ( RELan.
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More on Recursive and R.E. Languages

Proposition 5.1.4
For all L ∈ Lan, L is recursive iff there is a closed program pr such

that, for all w ∈ Str:
• if w ∈ L, then eval(app(pr , str(w))) = norm(const(true));
and

• if w 6∈ L, then eval(app(pr , str(w))) = norm(const(false)).
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More on Rec. and R.E. Languages

Proof (cont.). (“if”) To see that pr is a string predicate
program, suppose w ∈ Str. Since w ∈ L or w 6∈ L, we have that
eval(app(pr , str(w))) ∈ {const(true), const(false)}.

✷
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More on Rec. and R.E. Languages

Proof (cont.). (“if”) To see that pr is a string predicate
program, suppose w ∈ Str. Since w ∈ L or w 6∈ L, we have that
eval(app(pr , str(w))) ∈ {const(true), const(false)}.

We will show that L = L(pr ).

• Suppose w ∈ L. Then
eval(app(pr , str(w))) = norm(const(true)), so that
w ∈ L(pr ).

• Suppose w ∈ L(pr ), so that
eval(app(pr , str(w))) = norm(const(true)). Suppose, toward
a contradiction, that w 6∈ L. Then
eval(app(pr , str(w))) = norm(const(false))—contradiction.
Thus w ∈ L.

✷
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More on Rec. and R.E. Languages

Proposition 5.1.5
For all L ∈ Lan, L is recursively enumerable iff there is a closed

program pr such that, for all w ∈ Str,

w ∈ L iff eval(app(pr , str(w))) = norm(const(true)).
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More on Rec. and R.E. Languages

Proposition 5.1.5
For all L ∈ Lan, L is recursively enumerable iff there is a closed

program pr such that, for all w ∈ Str,

w ∈ L iff eval(app(pr , str(w))) = norm(const(true)).

Proof. (“only if”) Since L is recursively enumerable, L = L(pr)
for some closed program pr . Suppose w ∈ Str.

• Suppose w ∈ L. Since L = L(pr ), we have that
eval(app(pr , str(w))) = norm(const(true)).

• Suppose eval(app(pr , str(w))) = norm(const(true)). Thus
w ∈ L(pr ) = L.
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Recursive and Recursively Enumerable Languages

Proof (cont.). (“if”) It suffices to show that L = L(pr ).

• Suppose w ∈ L. Then
eval(app(pr , str(w))) = norm(const(true)), so that
w ∈ L(pr ).

• Suppose w ∈ L(pr ). Then
eval(app(pr , str(w))) = norm(const(true)), so that w ∈ L.

✷
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Relationship Between the Context-free and R.E.

Languages

Theorem 5.1.6
The context-free languages are a proper subset of the recursive

languages: CFLan ( RecLan.

Proof. To see that every context-free language is recursive,

To see that not every recursive language is context-free, let
L =

✷
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Relationship Between the Context-free and R.E.

Languages

Theorem 5.1.6
The context-free languages are a proper subset of the recursive

languages: CFLan ( RecLan.

Proof. To see that every context-free language is recursive, let L
be a context-free language. Thus there is a grammar G such that
L = L(G ). With some work, we can write and prove the
correctness of a string predicate program pr that implements our
algorithm (see Section 4.3) for checking whether a string is
generated by a grammar. Thus L is recursive.

To see that not every recursive language is context-free, let
L = { 0n1n2n | n ∈ N } . In Section 4.10, we learned that L is not
context-free. And in the preceding subsection, we wrote a string
predicate program pr that tests whether a string is in L. Thus L is
recursive. ✷
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