
4.9: Chomsky Normal Form

In this section, we study a special form of grammars called
Chomsky Normal Form (CNF), named for the linguist Noam
Chomsky.

Grammars in CNF have very nice formal properties. In particular,
valid parse trees for grammars in CNF are very close to being
binary trees.

Any grammar that doesn’t generate % can be put in CNF. And, if
G is a grammar that does generate %, it can be turned into a
grammar in CNF that generates L(G)− {%}. In the next section,
we will use this fact when proving the pumping lemma for
context-free languages, a method for showing the certain
languages are not context-free.

When converting a grammar to CNF, we will first eliminate
productions of the form q →% and q → r .

1 / 19

Eliminating %-Productions

A %-production is a production of the form q →%. We will show
by example how to turn a grammar G into a simplified grammar
with no %-productions that generates L(G)− {%}.

Suppose G is the grammar

A→ 0A1 | BB,

B→% | 2B.

First, we determine which variables q are nullable in the sense that
they generate %.

Clearly, B is nullable. And, since A→BB ∈ PG , it follows that A is
nullable.

2 / 19

Eliminating %-Productions

Since A is nullable, we replace the production A→ 0A1 with the
productions A→ 0A1 and A→ 01. The idea is that this second
production will make up for the fact that A won’t be nullable in
the new grammar.

Since B is nullable, we replace the production A→ BB with the
productions A→ BB and A→ B (the result of deleting either one
of the B’s).

The production B→% is deleted.

Since B is nullable, we replace the production B→ 2B with the
productions B→ 2B and B→ 2.

(If a production has n occurrences of nullable variables in its right
side, then there will be 2n new right sides, corresponding to all
ways of deleting or not deleting those n variable occurrences. But
if a right side of % would result, we don’t include it, and some may
be duplicates.)

3 / 19

Eliminating %-Productions

This give us the grammar

A→ 0A1 | 01 | BB | B,

B→ 2B | 2.

In general, we finish by simplifying our new grammar. The new
grammar of our example is already simplified, however.

4 / 19

Eliminating Unit Productions

A unit production for a grammar G is a production of the form
q→ r , where r is a variable (possibly equal to q). We now show by
example how to turn a grammar G into a simplified grammar with
no %-productions or unit productions that generates L(G)− {%}.

Suppose G is the grammar

A→ 0A1 | 01 | BB | B,

B→ 2B | 2.

We begin by applying our algorithm for eliminating %-productions
to our grammar; the algorithm has no effect in this case.

5 / 19

Eliminating Unit Productions

Our new grammar will have the same variables and start variable
as G . Its set of productions is the set of all q → w such that q is a
variable of G , w ∈ Str doesn’t consist of a single variable of G ,
and there is a variable r such that

• r is parsable from q, and

• r → w is a production of G .

(Determining whether r is parsable from q is easy, since we are
working with a grammar with no %-productions.)
This process results in the grammar

A→ 0A1 | 01 | BB | 2B | 2,

B→ 2B | 2.

Finally, we simplify our grammar, which gets rid of the production
A→ 2B.

6 / 19

Eliminating %-Productions and Unit Productions in

Forlan

The Forlan module Gram defines the following functions:

val eliminateEmptyProductions : gram -> gram

val eliminateEmptyAndUnitProductions : gram -> gram

For example, if gram is the grammar

A→ 0A1 | BB,

B→% | 2B.

then we can proceed as follows.

7 / 19

Elimination in Forlan

- val gram’ = Gram.eliminateEmptyProductions gram;

val gram’ = - : gram

- Gram.output("", gram’);

{variables} A, B {start variable} A

{productions} A -> B | 01 | BB | 0A1; B -> 2 | 2B

val it = () : unit

- val gram’’ =

= Gram.eliminateEmptyAndUnitProductions gram;

val gram’’ = - : gram

- Gram.output("", gram’’);

{variables} A, B {start variable} A

{productions} A -> 2 | 01 | BB | 0A1; B -> 2 | 2B

val it = () : unit

8 / 19

Generating a Grammar’s Language When Finite

We can now give an algorithm that takes in a grammar G and
generates L(G), when it is finite, and reports that L(G) is infinite,
otherwise.

The algorithm begins by letting G ′ be the result of eliminating
%-productions and unit productions from G . Thus G ′ is simplified
and generates L(G)− {%}.

If there is recursion in the productions of G ′—either direct or
mutual—then there is a variable q of G ′ and a valid parse tree pt

for G ′, such that the height of pt is at least one, q is the root label
of pt, and the yield of pt has the form xqy , for strings x and y ,
each of whose symbols is in alphabetG ′ ∪ QG ′ . Because G ′ lacks
%- and unit-productions, it follows that x 6= % or y 6= %.

Because each variable of G ′ is generating, we can turn pt into a
valid parse tree pt ′ whose root label is q, and whose yield has the
form uqv , for u, v ∈ (alphabetG ′)∗, where u 6= % or v 6= %.

9 / 19

Generating a Grammar’s Language When Finite

Thus we have that uqv is parsable from q in G ’, and an easy
mathemtical induction shows that unqvn is parsable from q in G ′,
for all n ∈ N. Because u 6= % or v 6= %, and q is generating, it
follows that there are infinitely many strings that are generated
from q in G ′. And, since q is reachable, and every variable of G ′ is
generating, it follows that L(G ′), and thus L(G), is infinite.

And when G ’ has no recursion in its productions, we can calculate
L(G ′) from the bottom-up, and add % iff G generates %.

10 / 19

Generating a Grammar’s Language in Forlan

The Forlan module Gram defines the following function:

val toStrSet : gram -> str set

Suppose gram is the grammar

A→ BB,

B→ CC,

C→% | 0 | 1,

and gram’ is the grammar

A→ BB,

B→ CC,

C→% | 0 | 1 | A.

Then we can proceed as follows.
11 / 19

Generating a Grammar’s Language in Forlan

- StrSet.output("", Gram.toStrSet gram);

%, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101,

110, 111, 0000, 0001, 0010, 0011, 0100, 0101, 0110,

0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

val it = () : unit

- StrSet.output("", Gram.toStrSet gram’);

language is infinite

uncaught exception Error

12 / 19

Generating a Grammar’s Language in Forlan

Suppose we have a grammar G and a natural number n. How can
we generate the set of all elements of L(G) of length n?

Of course, we could generate all strings over the alphabet of G of
length n, and use our algorithm for checking whether a grammar
generates a string to filter-out those strings that are not generated
by G .

Alternatively, we can start by creating an EFA M accepting all
strings over the alphabet of G with length n. Then, we can
intersect G with M, and apply Gram.toStrSet to the resulting
grammar.

13 / 19

Chomsky Normal Form

A grammar G is in Chomsky Normal Form (CNF) iff each of its
productions has one of the following forms:

• q → a, where a is not a variable; and

• q → pr , where p and r are variables.

We explain by example how a grammar G can be turned into a
simplified grammar in CNF that generates L(G)− {%}.

Suppose G is the grammar

A→ 0A1 | 01 | BB | 2,

B→ 2B | 2.

We begin by applying our algorithm for eliminating %-productions
and unit productions to this grammar. In this case, it has no effect.

14 / 19

Conversion into CNF

Since the productions A→ BB, A→ 2 and B→ 2 are legal CNF
productions, we simply transfer them to our new grammar.

Next we add the variables 〈0〉, 〈1〉 and 〈2〉 to our grammar, along
with the productions

〈0〉 → 0, 〈1〉 → 1, 〈2〉 → 2.

Now, we can replace the production A→ 01 with A→〈0〉〈1〉. And,
we can replace the production B→ 2B with the production
B→ 〈2〉B.

Finally, we replace the production A→ 0A1 with the productions

A→ 〈0〉C, C→ A〈1〉,

and add C to the set of variables of our new grammar.

15 / 19

Conversion into CNF

Summarizing, our new grammar is

A→ BB | 2 | 〈0〉〈1〉 | 〈0〉C,

B→ 2 | 〈2〉B,

〈0〉 → 0,

〈1〉 → 1,

〈2〉 → 2,

C→ A〈1〉.

The official version of our algorithm names variables in a different
way.

16 / 19

Converting into CNF in Forlan

The Forlan module Gram defines the following function:

val chomskyNormalForm : gram -> gram

Suppose gram of type gram is bound to the grammar with
variables A and B, start variable A, and productions

A→ 0A1 | BB,

B→% | 2B.

17 / 19

CNF in Forlan

Here is how Forlan can be used to turn this grammar into a CNF
grammar that generates the nonempty strings that are generated
by gram:

- val gram’ = Gram.chomskyNormalForm gram;

val gram’ = - : gram

- Gram.output("", gram’);

{variables} <1,A>, <1,B>, <2,0>, <2,1>, <2,2>, <3,A1>

{start variable} <1,A>

{productions}

<1,A> -> 2 | <1,B><1,B> | <2,0><2,1> | <2,0><3,A1>;

<1,B> -> 2 | <2,2><1,B>; <2,0> -> 0; <2,1> -> 1;

<2,2> -> 2; <3,A1> -> <1,A><2,1>

val it = () : unit

18 / 19

CNF in Forlan

- val gram’’ = Gram.renameVariablesCanonically gram’;

val gram’’ = - : gram

- Gram.output("", gram’’);

{variables} A, B, C, D, E, F {start variable} A

{productions}

A -> 2 | BB | CD | CF; B -> 2 | EB; C -> 0; D -> 1;

E -> 2; F -> AD

val it = () : unit

19 / 19

