
4.8: Converting Regular Expressions and

FA to Grammars

In this section, we give simple algorithms for converting regular
expressions and finite automata to grammars.

Since we have algorithms for converting between regular
expressions and finite automata, it is tempting to only define one
of these algorithms. But better results can be obtained by defining
direct conversions.

1 / 10

Converting Regular Expressions to Grammars

Regular expressions are converted to grammars using a recursive
algorithm that makes use of some of the operations on grammars
that were defined in Section 4.7.

The structure of the algorithm is very similar to the structure of
our algorithm for converting regular expressions to finite automata.
This gives us a function regToGram ∈ Reg→ Gram.

The algorithm is implemented in Forlan by the function

val fromReg : reg -> gram

of the Gram module. It’s available in the top-level environment
with the name regToGram.

2 / 10

Converting Regular Expressions to Grammars

Here is how we can convert the regular expression 01 + 10(11)∗ to
a grammar using Forlan:

- val gram = regToGram(Reg.input "");

@ 01 + 10(11)*

@ .

val gram = - : gram

- Gram.output

= ("", Gram.renameVariablesCanonically gram);

{variables} A, B, C, D, E, F {start variable} A

{productions}

A -> B | C; B -> 01; C -> DE; D -> 10; E -> % | FE;

F -> 11

val it = () : unit

3 / 10

Converting Finite Automata to Grammars

Suppose M is an FA. We define a function/algorithm
faToGram ∈ FA→ Gram by, for all FAs M, faToGramM is the
grammar G defined below. If QM ∩ alphabetM = ∅, then G is
defined by

• QG = QM ;

• sG = sM ;

• PG = { q → xr | q, x → r ∈ TM } ∪ { q →% | q ∈ AM }.

Otherwise, we first rename the states of M using a uniform
number of 〈 and 〉 pairs, so as to avoid conflicts with the elements
of M’s alphabet.

4 / 10

Converting Finite Automata to Grammars

For example, suppose M is the DFA

B

1 1

0

0

Start A

Our algorithm converts M into the grammar

A→% | 0B | 1A,

B→ 0A | 1B.

5 / 10

Converting FAs to Grammars

Consider, e.g., the valid labeled path for M

A
1

⇒ A
0

⇒ B
0

⇒ A,

which explains why 100 ∈ L(M). It corresponds to the valid parse
tree for G

A

1 A

0 B

0 A

% ,

which explains why 100 ∈ L(G).
6 / 10

Converting FA’s to Grammars

If we have converted an FA M to a grammar G , we can prove
L(M) ⊆ L(G) by induction on the lengths of labeled paths, and we
can prove L(G) ⊆ L(M) by induction on parse trees. Thus we have
L(G) = L(M).

7 / 10

Converting FA’s to Grammars

The Forlan module Gram contains the function

val fromFA : fa -> gram

which implements our algorithm for converting finite automata to
grammars. It’s available in the top-level environment with the
name faToGram.

8 / 10

Converting FA’s to Grammars

Suppose fa of type fa is bound to M. Here is how we can convert
M to a grammar using Forlan:

- val gram = faToGram fa;

val gram = - : gram

- Gram.output("", gram);

{variables} A, B {start variable} A

{productions} A -> % | 0B | 1A; B -> 0A | 1B

val it = () : unit

9 / 10

Consequences of Conversion Functions

Because of the existence of our conversion functions, we have that
every regular language is a context-free language.

On the other hand, the language { 0n1n | n ∈ N } is context-free,
because of the grammar

A→% | 0A1,

but is not regular, as we proved in Section 3.14.

Summarizing, we have:

Theorem 4.8.2

The regular languages are a proper subset of the context-free

languages: RegLan (CFLan.

10 / 10

