In this section, we define union, concatenation and closure operations/algorithms on grammars. As a result, we will have that the context-free languages are closed under union, concatenation and closure.

In this section, we define union, concatenation and closure operations/algorithms on grammars. As a result, we will have that the context-free languages are closed under union, concatenation and closure.

In Section 4.10, we will see that the context-free languages aren't closed under intersection, complementation and set difference.

In this section, we define union, concatenation and closure operations/algorithms on grammars. As a result, we will have that the context-free languages are closed under union, concatenation and closure.

In Section 4.10, we will see that the context-free languages aren't closed under intersection, complementation and set difference.

But we are able to define operations/algorithms for:

- intersecting a grammar and an empty-string finite automaton;
 and
- subtracting a deterministic finite automaton from a grammar.

Thus, if L_1 is a context-free language, and L_2 is a regular language, we will have that $L_1 \cap L_2$ and $L_1 - L_2$ are context-free.

In this section, we define union, concatenation and closure operations/algorithms on grammars. As a result, we will have that the context-free languages are closed under union, concatenation and closure.

In Section 4.10, we will see that the context-free languages aren't closed under intersection, complementation and set difference.

But we are able to define operations/algorithms for:

- intersecting a grammar and an empty-string finite automaton;
 and
- subtracting a deterministic finite automaton from a grammar.

Thus, if L_1 is a context-free language, and L_2 is a regular language, we will have that $L_1 \cap L_2$ and $L_1 - L_2$ are context-free.

The book shows several additional closure properties of context-free languages, in addition to giving the corresponding operations on grammars.

Basic Grammars and Operations on Grammars

The grammar, **emptyStr**, with variable A and production $A \rightarrow \%$ generates the language $\{\%\}$.

The grammar, **emptySet**, with variable A and no productions generates the language \emptyset .

If w is a string, then the grammar with variable A and production $A \to w$ generates the language $\{w\}$.

Basic Grammars and Operations on Grammars

The grammar, **emptyStr**, with variable A and production $A \rightarrow \%$ generates the language $\{\%\}$.

The grammar, **emptySet**, with variable A and no productions generates the language \emptyset .

If w is a string, then the grammar with variable A and production $A \to w$ generates the language $\{w\}$. Actually, we must be careful to chose a variable that doesn't occur in w. We can do that by adding as many nested < and > around A as needed (A, <A>, <<A>>, etc.).

This defines functions $strToGram \in Str \rightarrow Gram$ and $symToGram \in Sym \rightarrow Gram$.

Suppose G_1 and G_2 are grammars. We can define a grammar H such that $L(H) = L(G_1) \cup L(G_2)$ by unioning together the variables and productions of G_1 and G_2 , and adding a new start variable q, along with productions

Suppose G_1 and G_2 are grammars. We can define a grammar H such that $L(H) = L(G_1) \cup L(G_2)$ by unioning together the variables and productions of G_1 and G_2 , and adding a new start variable q, along with productions

$$q \rightarrow s_{G_1} \mid s_{G_2}$$
.

What do we have to know about G_1 , G_2 and q for the above to be valid?

Suppose G_1 and G_2 are grammars. We can define a grammar H such that $L(H) = L(G_1) \cup L(G_2)$ by unioning together the variables and productions of G_1 and G_2 , and adding a new start variable q, along with productions

$$q \rightarrow s_{G_1} \mid s_{G_2}$$
.

What do we have to know about G_1 , G_2 and q for the above to be valid?

• $Q_{G_1} \cap Q_{G_2} = \emptyset$ and $q \notin Q_{G_1} \cup Q_{G_2}$; and

Suppose G_1 and G_2 are grammars. We can define a grammar H such that $L(H) = L(G_1) \cup L(G_2)$ by unioning together the variables and productions of G_1 and G_2 , and adding a new start variable q, along with productions

$$q \rightarrow s_{G_1} \mid s_{G_2}$$
.

What do we have to know about G_1 , G_2 and q for the above to be valid?

- $Q_{G_1} \cap Q_{G_2} = \emptyset$ and $q \notin Q_{G_1} \cup Q_{G_2}$; and
- alphabet $G_1 \cap Q_{G_2} = \emptyset$, alphabet $G_2 \cap Q_{G_1} = \emptyset$ and $q \notin \text{alphabet } G_1 \cup \text{alphabet } G_2$.

Our official union operation for grammars renames the variables of G_1 and G_2 , and chooses the start variable q, in a uniform way that makes the preceding properties hold.

This gives us a function union \in Gram \times Gram \rightarrow Gram.

We do something similar when defining the other closure operations. In what follows, though, we'll ignore this issue, so as to keep things simple.

Suppose G_1 and G_2 are grammars. We can define a grammar H such that $L(H) = L(G_1)L(G_2)$ by unioning together the variables and productions of G_1 and G_2 , and adding a new start variable q, along with production

This gives us a function **concat** \in **Gram** \times **Gram** \rightarrow **Gram**.

Suppose G_1 and G_2 are grammars. We can define a grammar H such that $L(H) = L(G_1)L(G_2)$ by unioning together the variables and productions of G_1 and G_2 , and adding a new start variable q, along with production

$$q \rightarrow s_{G_1} s_{G_2}$$
.

This gives us a function **concat** \in **Gram** \times **Gram** \rightarrow **Gram**.

Suppose G_1 and G_2 are grammars. We can define a grammar H such that $L(H) = L(G_1)L(G_2)$ by unioning together the variables and productions of G_1 and G_2 , and adding a new start variable q, along with production

$$q \rightarrow s_{G_1} s_{G_2}$$
.

This gives us a function $concat \in Gram \times Gram \rightarrow Gram$.

Suppose G is a grammar. We can define a grammar H such that $L(H) = L(G)^*$ by adding to the variables and productions of G a new start variable q, along with productions

This gives us a function **closure** \in **Gram** \rightarrow **Gram**.

Suppose G_1 and G_2 are grammars. We can define a grammar H such that $L(H) = L(G_1)L(G_2)$ by unioning together the variables and productions of G_1 and G_2 , and adding a new start variable q, along with production

$$q \rightarrow s_{G_1} s_{G_2}$$
.

This gives us a function $concat \in Gram \times Gram \rightarrow Gram$.

Suppose G is a grammar. We can define a grammar H such that $L(H) = L(G)^*$ by adding to the variables and productions of G a new start variable q, along with productions

$$q \rightarrow \% \mid s_G q$$
.

This gives us a function **closure** \in **Gram** \rightarrow **Gram**.

We now consider an algorithm for intersecting a grammar G with an EFA M, resulting in **simplify** H, where the grammar H is defined as follows.

We now consider an algorithm for intersecting a grammar G with an EFA M, resulting in **simplify** H, where the grammar H is defined as follows.

For all $p \in Q_G$ and $q, r \in Q_M$, H has a variable $\langle p, q, r \rangle$ that generates

```
\{ w \in (alphabet G)^* \mid w \in \Pi_{G,p} \text{ and } \}
```

We now consider an algorithm for intersecting a grammar G with an EFA M, resulting in **simplify** H, where the grammar H is defined as follows.

For all $p \in Q_G$ and $q, r \in Q_M$, H has a variable $\langle p, q, r \rangle$ that generates

```
\{ w \in (alphabet G)^* \mid w \in \Pi_{G,p} \text{ and } r \in \Delta_M(\{q\},w) \}.
```

We now consider an algorithm for intersecting a grammar G with an EFA M, resulting in **simplify** H, where the grammar H is defined as follows.

For all $p \in Q_G$ and $q, r \in Q_M$, H has a variable $\langle p, q, r \rangle$ that generates

```
\{ w \in (alphabet G)^* \mid w \in \Pi_{G,p} \text{ and } r \in \Delta_M(\{q\},w) \}.
```

The remaining variable of H is A, which is its start variable.

We now consider an algorithm for intersecting a grammar G with an EFA M, resulting in **simplify** H, where the grammar H is defined as follows.

For all $p \in Q_G$ and $q, r \in Q_M$, H has a variable $\langle p, q, r \rangle$ that generates

$$\{ w \in (alphabet G)^* \mid w \in \Pi_{G,p} \text{ and } r \in \Delta_M(\{q\}, w) \}.$$

The remaining variable of H is A, which is its start variable. For each $r \in A_M$, H has a production

$$A \rightarrow \langle \quad , \quad , \rangle.$$

We now consider an algorithm for intersecting a grammar G with an EFA M, resulting in **simplify** H, where the grammar H is defined as follows.

For all $p \in Q_G$ and $q, r \in Q_M$, H has a variable $\langle p, q, r \rangle$ that generates

$$\{ w \in (alphabet G)^* \mid w \in \Pi_{G,p} \text{ and } r \in \Delta_M(\{q\}, w) \}.$$

The remaining variable of H is A, which is its start variable. For each $r \in A_M$, H has a production

$$A \rightarrow \langle s_G, s_M, r \rangle$$
.

We now consider an algorithm for intersecting a grammar G with an EFA M, resulting in **simplify** H, where the grammar H is defined as follows.

For all $p \in Q_G$ and $q, r \in Q_M$, H has a variable $\langle p, q, r \rangle$ that generates

$$\{ w \in (alphabet G)^* \mid w \in \Pi_{G,p} \text{ and } r \in \Delta_M(\{q\}, w) \}.$$

The remaining variable of H is A, which is its start variable. For each $r \in A_M$, H has a production

$$A \rightarrow \langle s_G, s_M, r \rangle$$
.

For each %-production $p \to \%$ of G and $q, r \in Q_M$, if $\in \Delta_M(\quad,\quad)$, then H will have the production

$$\langle p, q, r \rangle \rightarrow \%$$
.

We now consider an algorithm for intersecting a grammar G with an EFA M, resulting in **simplify** H, where the grammar H is defined as follows.

For all $p \in Q_G$ and $q, r \in Q_M$, H has a variable $\langle p, q, r \rangle$ that generates

$$\{ w \in (alphabet G)^* \mid w \in \Pi_{G,p} \text{ and } r \in \Delta_M(\{q\}, w) \}.$$

The remaining variable of H is A, which is its start variable. For each $r \in A_M$, H has a production

$$A \rightarrow \langle s_G, s_M, r \rangle$$
.

For each %-production $p \to \%$ of G and $q, r \in Q_M$, if $r \in \Delta_M(\{q\}, \%)$, then H will have the production

$$\langle p, q, r \rangle \rightarrow \%$$
.

To say what the remaining productions of H are, define a function

$$f \in (alphabet G \cup Q_G) \times Q_M \times Q_M \rightarrow alphabet G \cup Q_H$$

by: for all $a \in \mathbf{alphabet} \ G \cup Q_G$ and $q, r \in Q_M$,

$$f(a,q,r) = \begin{cases} a, & \text{if } a \in \mathbf{alphabet} \ G, \text{ and } \\ \langle a,q,r \rangle, & \text{if } a \in Q_G. \end{cases}$$

To say what the remaining productions of H are, define a function

$$f \in (alphabet G \cup Q_G) \times Q_M \times Q_M \rightarrow alphabet G \cup Q_H$$

by: for all $a \in \mathbf{alphabet} \ G \cup Q_G$ and $q, r \in Q_M$,

$$f(a,q,r) = \left\{ egin{array}{ll} a, & \mbox{if } a \in \mathbf{alphabet} \ G, \ \mbox{and} \ \langle a,q,r
angle, & \mbox{if } a \in Q_G. \end{array}
ight.$$

For all $p \in Q_G$, $n \in \mathbb{N} - \{0\}$, $a_1, \ldots, a_n \in \mathbf{Sym}$ and $q_1, \ldots, q_{n+1} \in Q_M$, if

- $p \rightarrow a_1 \cdots a_n \in P_G$, and
- for all $i \in [1:n]$, if $a_i \in \text{alphabet } G$, then $q_{i+1} \in \Delta_M(\{q_i\}, a_i)$,

then we let

$$\langle p, q_1, q_{n+1} \rangle \rightarrow f(a_1, q_1, q_2) \cdots f(a_n, q_n, q_{n+1})$$

be production of H.

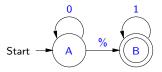
This gives us a function inter \in Gram \times EFA \rightarrow Gram.

This gives us a function inter \in Gram \times EFA \rightarrow Gram.

For example, let G be the grammar

$$A \rightarrow \% \mid 0A1A \mid 1A0A$$
,

and M be the EFA



so that G generates all elements of $\{0,1\}^*$ with an equal number of 0's and 1's, and M accepts $\{0\}^*\{1\}^*$.

Then **simplify** *H* is

$$\begin{split} A &\rightarrow \langle A,A,B \rangle, \\ \langle A,A,A \rangle &\rightarrow \%, \\ \langle A,A,B \rangle &\rightarrow \%, \\ \langle A,A,B \rangle &\rightarrow 0 \langle A,A,A \rangle 1 \langle A,B,B \rangle, \\ \langle A,A,B \rangle &\rightarrow 0 \langle A,A,B \rangle 1 \langle A,B,B \rangle, \\ \langle A,A,B \rangle &\rightarrow 0 \langle A,B,B \rangle 1 \langle A,B,B \rangle, \\ \langle A,B,B \rangle &\rightarrow \%. \end{split}$$

Note that simplification eliminated the variable $\langle A, B, A \rangle$. If we hand simplify further, we can turn this into:

$$\begin{aligned} A &\rightarrow \langle A, A, B \rangle, \\ \langle A, A, B \rangle &\rightarrow \% \mid 0 \langle A, A, B \rangle 1 \end{aligned}$$

To prove that our intersection algorithm is correct, we'll need two lemmas.

Lemma 4.7.1

For $p \in Q_G$, let the property $P_p(w)$, for $w \in \Pi_{G,p}$, be: for all $q, r \in Q_M$, if $r \in \Delta_M(\{q\}, w)$, then $w \in \Pi_{H,\langle p,q,r\rangle}$.

П

Then, for all $p \in Q_G$, for all $w \in \Pi_{G,p}$, $P_p(w)$.

Proof. By induction on Π .

To prove that our intersection algorithm is correct, we'll need two lemmas.

Lemma 4.7.1

For $p \in Q_G$, let the property $P_p(w)$, for $w \in \Pi_{G,p}$, be: for all $q, r \in Q_M$, if $r \in \Delta_M(\{q\}, w)$, then $w \in \Pi_{H,\langle p,q,r\rangle}$.

Then, for all $p \in Q_G$, for all $w \in \Pi_{G,p}$, $P_p(w)$.

Proof. By induction on Π . We use the fact that, if $n \in \mathbb{N} - \{0\}$, $q_1, q_{n+1} \in Q_M$, $w_1, \ldots, w_n \in \mathbf{Str}$ and $q_{n+1} \in \Delta_M(\{q_1\}, w_1 \cdots w_n)$, then there are $q_2, \ldots, q_n \in Q_M$ such that $q_{i+1} \in \Delta_M(\{q_i\}, w_i)$, for all $i \in [1:n]$.

L

To prove that our intersection algorithm is correct, we'll need two lemmas.

Lemma 4.7.1

For $p \in Q_G$, let the property $P_p(w)$, for $w \in \Pi_{G,p}$, be: for all $q, r \in Q_M$, if $r \in \Delta_M(\{q\}, w)$, then $w \in \Pi_{H,\langle p,q,r\rangle}$.

Then, for all $p \in Q_G$, for all $w \in \Pi_{G,p}$, $P_p(w)$.

Proof. By induction on Π . We use the fact that, if $n \in \mathbb{N} - \{0\}$, $q_1, q_{n+1} \in Q_M$, $w_1, \ldots, w_n \in \mathbf{Str}$ and $q_{n+1} \in \Delta_M(\{q_1\}, w_1 \cdots w_n)$, then there are $q_2, \ldots, q_n \in Q_M$ such that $q_{i+1} \in \Delta_M(\{q_i\}, w_i)$, for all $i \in [1:n]$. (This is true because M is an EFA; if M were an FA, we wouldn't be able to conclude this.) \square

Lemma 4.7.2

```
Let the property P_A(w), for w \in \Pi_{H,A}, be w \in L(G) and w \in L(M).

For p \in Q_G and q, r \in Q_M, let the property P_{\langle p,q,r \rangle}(w), for w \in \Pi_{H,\langle p,q,r \rangle}, be w \in \Pi_{G,p} and r \in \Delta_M(\{q\},w).
```

Then:

- (1) For all $w \in \Pi_{H,A}$, $P_A(w)$.
- (2) For all $p \in Q_G$ and $q, r \in Q_M$, for all $w \in \Pi_{H,\langle p,q,r \rangle}$, $P_{\langle p,q,r \rangle}(w)$.

Proof. We proceed by induction on \square .

Lemma 4.7.3

$$L(H) = L(G) \cap L(M)$$
.

Proof. $L(H) \subseteq L(G) \cap L(M)$ follows by Lemma 4.7.2(1).

Lemma 4.7.3

$$L(H) = L(G) \cap L(M)$$
.

Proof. $L(H) \subseteq L(G) \cap L(M)$ follows by Lemma 4.7.2(1). For the other inclusion, suppose $w \in L(G) \cap L(M)$, so that $w \in \Pi_{G,s_G}$ and $r \in \Delta_M(\{s_M\},w)$, for some $r \in A_M$. By Lemma 4.7.1, it follows that $w \in \Pi_{H,\langle s_G,s_M,r\rangle}$. But because $r \in A_M$, we have that $A \to \langle s_G,s_M,r\rangle$ is a production of H. Thus $w \in \Pi_{H,A} = L(H)$. \square

Difference of Grammar and DFA

Given a grammar G and a DFA M, we can define the difference of G and M to be

This is analogous to what we did when defining the difference of DFAs.

This gives us a function minus \in Gram \times DFA \rightarrow Gram.

Difference of Grammar and DFA

Given a grammar G and a DFA M, we can define the difference of G and M to be

inter(G, complement(M, alphabet G)).

This is analogous to what we did when defining the difference of DFAs.

This gives us a function $minus \in Gram \times DFA \rightarrow Gram$.

Summary of Closure Properties

Theorem 4.7.4

Suppose $L, L_1, L_2 \in \mathbf{CFLan}$ and $L' \in \mathbf{RegLan}$. Then:

- (1) $L_1 \cup L_2 \in \mathbf{CFLan}$;
- (2) $L_1L_2 \in \mathbf{CFLan}$;
- (3) $L^* \in \mathbf{CFLan}$;
- (4) $L \cap L' \in \mathbf{CFLan}$; and
- (5) $L L' \in \mathbf{CFLan}$.

Operations on Grammars in Forlan

The Forlan module **Gram** defines the following constants and operations on grammars:

```
val emptyStr : gram
val emptySet : gram
val fromStr : str -> gram
val fromSym : sym -> gram
val union : gram * gram -> gram
val concat : gram * gram -> gram
val closure : gram -> gram
val fromStrSet : str set -> gram
val inter : gram * efa -> gram
val minus : gram * dfa -> gram
```

The functions fromStr and fromSym and are also available in the top-level environment with the names

```
val strToGram : str -> gram
val symToGram : sym -> gram
```

For example, we can construct a grammar G such that $L(G) = \{01\} \cup \{10\}\{11\}^*$, as follows. - val gram1 = strToGram(Str.fromString "01"); val gram1 = - : gram- val gram2 = strToGram(Str.fromString "10"); val gram2 = - : gram- val gram3 = strToGram(Str.fromString "11"); val gram3 = - : gram- val gram = = Gram.union(gram1, Gram.concat(gram2, Gram.closure gram3)); val gram = - : gram

```
- val gram' = Gram.renameVariablesCanonically gram;
val gram' = -: gram
- Gram.output("", gram');
{variables} A, B, C, D, E, F {start variable} A
{productions}
A -> B | C; B -> 01; C -> DE; D -> 10; E -> % | FE;
F -> 11
val it = (): unit
```

We can use Gram.fromStrSet as follows:

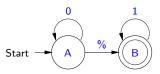
```
- val gram'' =
= Gram.fromStrSet
= (StrSet.fromString "0, 01, 010, 0101");
val gram', = - : gram
- val gram'' = Gram.renameVariablesCanonically
gram'';
val gram'', = - : gram
- Gram.output("", gram'');
{variables} A, B, C, D, E {start variable} A
{productions}
A \rightarrow B \mid C \mid D \mid E; B \rightarrow 0; C \rightarrow 01; D \rightarrow 010;
E -> 0101
val it = () : unit
```

And here are examples of how we can use Gram.inter and Gram.minus.

Let gram be the grammar

$$A \rightarrow \% \mid 0A1A \mid 1A0A$$
,

and efa be the EFA



```
- val gram' = Gram.inter(gram, efa);
val gram' = - : gram
- Gram.output("", gram');
\{variables\}\ A, \langle A, A, A \rangle, \langle A, A, B \rangle, \langle A, B, B \rangle
{start variable} A
{productions}
A \rightarrow \langle A, A, B \rangle; \langle A, A, A \rangle \rightarrow \%;
\langle A, A, B \rangle \rightarrow
% | O<A,A,A>1<A,B,B> | O<A,A,B>1<A,B,B> |
0 < A, B, B > 1 < A, B, B > :
\langle A, B, B \rangle - \rangle \%
val it = () : unit
- fun elimVars(gram, nil) = gram
     | elimVars(gram, q :: qs) =
           elimVars(Gram.eliminateVariable(gram, q), qs);
val elimVars = fn : gram * sym list -> gram
```

```
- val gram'' =
        elimVars
        (gram',
         [Sym.fromString "<A,A,A>",
          Sym.fromString "<A,B,B>"]);
val gram', = - : gram
- val gram'' =
        Gram.renameVariablesCanonically
        (Gram.restart(Gram.simplify gram''));
val gram'', = - : gram
- Gram.output("", gram',');
{variables} A {start variable} A
{productions} A -> % | OA1
val it = () : unit
```

We'll end this section with a more sophisticated example. Define a language \boldsymbol{X} by:

$$X = \{ 0^{i}1^{j}2^{k}3^{l} \mid i,j,k,l \in \mathbb{N} \text{ and } i < l \text{ and } j > k \text{ and } i+j \text{ is even and } k+l \text{ is odd } \}.$$

Is X context-free?

We'll end this section with a more sophisticated example. Define a language \boldsymbol{X} by:

$$X = \{ 0^{i}1^{j}2^{k}3^{l} \mid i,j,k,l \in \mathbb{N} \text{ and } i < l \text{ and } j > k \text{ and } i+j \text{ is even and } k+l \text{ is odd } \}.$$

Is X context-free?

Yes. Let's see how Forlan can help us come up with a grammar generating X.

First, we put the text

```
{variables} A, B, <1>, <3> {start variable} A
{productions}
A -> 0A3 | B<3>;
B -> 1B2 | <1>;
<1> -> 1 | 1<1>;
<3> -> 3 | 3<3>
```

for a grammar generating $\{0^i1^j2^k3^l \mid i,j,k,l \in \mathbb{N} \text{ and } i < l \text{ and } j > k\}$ in the file seq0123-where-0lt3-and-1gt2-gram.txt.

Next we put the text

```
{states} A, B {start state} A {accepting states} A
{transitions}
A, 0 -> B; A, 1 -> B; A, 2 -> A; A, 3 -> A;
B, 0 -> A; B, 1 -> A; B, 2 -> B; B, 3 -> B
```

for a DFA accepting all elements of $\{0,1,2,3\}^*$ in which the sum of the numbers of 0's and 1's is even in the file even0plus1-alp23-dfa.txt.

Then we load the grammar and DFA into Forlan:

Next we carry out some standard definitions:

```
- val regToDFA =
        nfaToDFA o efaToNFA o faToEFA o regToFA;
val regToDFA = fn : reg -> dfa
- val minAndRen =
        DFA.renameStatesCanonically o DFA.minimize;
val minAndRen = fn : dfa -> dfa
- val syms0123 = SymSet.fromString "0, 1, 2, 3";
val syms0123 = - : sym set
- val allStrReg = Reg.closure(Reg.allSym syms0123);
val allStrReg = - : reg
- val allStrDFA = minAndRen(regToDFA allStrReg);
val allStrDFA = - : dfa
```

Next we convert even0plus1Alp23DFA into a DFA odd2plus3Alp01DFA that accepts all elements of $\{0,1,2,3\}^*$ in which the sum of the numbers of 2's and 3's is odd:

See Section 3.12 of the book for discussion of DFA.renameAlphabet.

Next we create a DFA even0plus1And0dd2plus3DFA accepting all elements of $\{0,1,2,3\}^*$ in which the sum of the numbers of 0's and 1's is even, and the sum of the numbers of 2's and 3's is odd:

And then we create our first grammar, gram0, generating X:

```
- val gram0 =
           Gram.renameVariablesCanonically
           (Gram.inter
            (seq0123WhereOlt3And1gt2Gram,
              injDFAToEFA evenOplus1AndOdd2plus3DFA));
val gram0 = - : gram
- Gram.output("", gram0);
{variables} A, B, C, D, E, F, G, H, I, J, K, L, M
{start variable} A
{productions}
A \rightarrow B; B \rightarrow DK \mid EM \mid OC3; C \rightarrow FJ \mid GL \mid OB3;
D \rightarrow H \mid 1G2; E \rightarrow 1F2; F \rightarrow I \mid 1E2; G \rightarrow 1D2;
H \rightarrow 1I; I \rightarrow 1 \mid 1H; J \rightarrow 3L; K \rightarrow 3 \mid 3M;
L \rightarrow 3 \mid 3J; M \rightarrow 3K
val it = () : unit
```

In the grammar gram0, there are opportunities for hand-simplification using Forlan:

```
- fun elimVars(gram, nil) = gram
    | elimVars(gram, q :: qs) =
        elimVars
        (Gram.eliminateVariable
         (gram, Sym.fromString q),
         qs);
val elimVars = fn : gram * string list -> gram
- val gram1 =
        Gram.renameVariablesCanonically
        (elimVars
         (Gram.restart gram0,
          ["E", "G", "H", "J", "M", "C"]));
val gram1 = - : gram
```

```
- Gram.output("", gram1);
{variables} A, B, C, D, E, F {start variable} A
{productions}
A -> BE | 00A33 | 0C3F3 | 1C23E | 01B2F3;
B -> 1D | 11B22; C -> D | 11C22; D -> 1 | 11D;
E -> 3 | 33E; F -> 3 | 33F
val it = () : unit
- Gram.numVariables gram1;
val it = 6 : int
- Gram.numProductions gram1;
val it = 15 : int
```

In gram1, E and its productions, and F and its productions, have the same form. There is no reason to have both of them, and so we can remove F and its productions, replacing all occurrences of F in the remaining productions by E. This gives us the grammar:

```
\begin{split} A &\to BE \mid 00A33 \mid 0C3E3 \mid 1C23E \mid 01B2E3 \\ B &\to 1D \mid 11B22 \\ C &\to D \mid 11C22 \\ D &\to 1 \mid 11D \\ E &\to 3 \mid 33E. \end{split}
```

Because E generates only strings of 3's, we can replace the occurrences of E3 on the right-hand sides of A's productions by 3E, yielding:

```
\begin{split} A &\to BE \mid 00A33 \mid 0C33E \mid 1C23E \mid 01B23E \\ B &\to 1D \mid 11B22 \\ C &\to D \mid 11C22 \\ D &\to 1 \mid 11D \\ E &\to 3 \mid 33E. \end{split}
```

Next, we note that

```
\begin{split} &\Pi_{\mathsf{D}} = \{\, 1^m \mid m \in \mathbb{N} \text{ and } m \text{ is odd} \,\}, \\ &\Pi_{\mathsf{C}} = \{\, 1^{2n} 1^m 2^{2n} \mid n, m \in \mathbb{N} \text{ and } m \text{ is odd} \,\}, \\ &\Pi_{\mathsf{B}} = \{\, 1^{2n} 11^m 2^{2n} \mid n, m \in \mathbb{N} \text{ and } m \text{ is odd} \,\} \\ &= \{\, 11^{2n} 1^m 2^{2n} \mid n, m \in \mathbb{N} \text{ and } m \text{ is odd} \,\} \\ &= \{1\} \Pi_{\mathsf{C}}. \end{split}
```

Thus we can remove B and its productions, replacing all occurrences of B by 1C:

$$\begin{aligned} \mathsf{A} &\to \mathsf{1CE} \mid \mathsf{00A33} \mid \mathsf{0C33E} \mid \mathsf{1C23E} \mid \mathsf{011C23E} \\ \mathsf{C} &\to \mathsf{D} \mid \mathsf{11C22} \\ \mathsf{D} &\to \mathsf{1} \mid \mathsf{11D} \\ \mathsf{E} &\to \mathsf{3} \mid \mathsf{33E}. \end{aligned}$$

Since D is only used in a production of C, we can combine the productions of C and D, yielding

$$C \rightarrow 1 \mid 11C \mid 11C22$$
.

This give us our final grammar:

A
$$\to$$
 1CE | 00A33 | 0C33E | 1C23E | 011C23E
C \to 1 | 11C | 11C22
E \to 3 | 33E.

or

$$\begin{aligned} A &\to 1 BC \mid 1 B23C \mid 0 B33C \mid 011 B23C \mid 00 A33 \\ B &\to 1 \mid 11 B \mid 11 B22 \\ C &\to 3 \mid 33 C. \end{aligned}$$