4.7: Closure Properties of Context-free Languages

In this section, we define union, concatenation and closure
operations/algorithms on grammars. As a result, we will have that
the context-free languages are closed under union, concatenation
and closure.

In Section 4.10, we will see that the context-free languages aren't
closed under intersection, complementation and set difference.

But we are able to define operations/algorithms for:

® intersecting a grammar and an empty-string finite automaton;

and

® subtracting a deterministic finite automaton from a grammar.
Thus, if L1 is a context-free language, and L, is a regular
language, we will have that L; N Ly and L; — L, are context-free.
The book shows several additional closure properties of
context-free languages, in addition to giving the corresponding
operations on grammars.

1/36

Basic Grammars and Operations on Grammars

The grammar, emptyStr, with variable A and production A — %
generates the language {%}.

The grammar, emptySet, with variable A and no productions
generates the language 0.

If wis a string, then the grammar with variable A and production
A — w generates the language {w}. Actually, we must be careful
to chose a variable that doesn’t occur in w. We can do that by
adding as many nested < and > around A as needed (A, <A>,
<<A>>, etc.).

This defines functions strToGram € Str — Gram and
symToGram € Sym — Gram.

2/36

Union Operation

Suppose G; and Gy are grammars. We can define a grammar H
such that L(H) = L(G1) U L(Gy) by unioning together the variables
and productions of G; and Gy, and adding a new start variable g,
along with productions

q— sq | SG,-

What do we have to know about Gi, G> and g for the above to be
valid?
®* Q6 NQg =0and g ¢ Qs U Qg,; and
e alphabet G; N Qg, = 0, alphabet G, N Qg, = () and
q ¢ alphabet G; U alphabet G,.

3/36

Union Operation

Our official union operation for grammars renames the variables of
G1 and Gy, and chooses the start variable g, in a uniform way that
makes the preceding properties hold.

This gives us a function union € Gram x Gram — Gram.

We do something similar when defining the other closure
operations. In what follows, though, we'll ignore this issue, so as to
keep things simple.

4/36

Concatenation and Closure Operations

Suppose G; and Gy are grammars. We can define a grammar H

such that L(H) = L(G1)L(Gz) by unioning together the variables
and productions of G; and Gy, and adding a new start variable g,
along with production

q — 5G,5G,-

This gives us a function concat € Gram x Gram — Gram.

Suppose G is a grammar. We can define a grammar H such that
L(H) = L(G)* by adding to the variables and productions of G a
new start variable g, along with productions

qg— % | scq.

This gives us a function closure € Gram — Gram.

5/36

Intersection of Grammar and EFA

We now consider an algorithm for intersecting a grammar G with
an EFA M, resulting in simplify H, where the grammar H is
defined as follows.

For all p € Qg and q,r € Qu, H has a variable {p, g, r) that
generates

{w € (alphabet G)* | w € Mg pand r € Ay({q}, w) }.

The remaining variable of H is A, which is its start variable.
For each r € Ay, H has a production

A — (sG,Sm,r).

For each %-production p — % of G and q,r € Qp, if
r € Ayp({q}, %), then H will have the production

(p,q,r) = %.

6/36

Intersection of Grammar and EFA

To say what the remaining productions of H are, define a function
f € (alphabet G U Qg) x Qu x Qu — alphabet G U Qy
by: for all a € alphabet G U Q¢ and q,r € Qu,
| a, if a € alphabet G, and
fla.q.r) = { (a,q,r), ifac Qg.

For all p € Qg, n€ N — {0}, a1,...,a, € Sym and
q1,---,9n+1 € QM, if
® p—ai---a, € Pg, and
e for all i € [1: n], if a; € alphabet G, then
gi+1 € Am({qi}; ai),
then we let

<p7 qi1, CIn+1> — f(ah qi1, CIZ) e f(an7 qn, Qn+1)
be production of H.

7/36

Intersection of Grammar and EFA

This gives us a function inter € Gram x EFA — Gram.

For example, let G be the grammar

A = % | 0ALA | 1A0A,

0 1
%
Start ° 2

so that G generates all elements of {0,1}* with an equal number
of 0's and 1's, and M accepts {0}*{1}*.

and M be the EFA

8/36

Intersection of Grammar and EFA
Then simplify H is

A — (A,A,B),
A A A
A, A B
A, A B
A A B
A A B
A.B,B

— %,
— %,
— 0(A,A,A)1(A, B, B),
— 0(A, A, B)1(A, B, B),
— 0(A, B, B)1(A, B, B),
— %.

{
{
{
{
{
{

= = = = = L

Note that simplification eliminated the variable (A, B, A). If we
hand simplify further, we can turn this into:

A % <A7 A? B>7
(A,A,B) = % | O(A, A, B)1

9/36

Intersection of Grammar and EFA

To prove that our intersection algorithm is correct, we'll need two
lemmas.

Lemma 4.7.1
For p € Qg, let the property Pp(w), for w € Mg p, be:

forall q,r € Qu, ifr € Ay({q}, w), then w € Ty (5 q.r)-
Then, for all p € Qg, for all w € Mg p, Pp(w).

Proof. By induction on . We use the fact that, if n € N — {0},

G1,qn+1 € Qu, Wi, ..., w, € Strand gny1 € Ap({g1}, wi - wy),
then there are qo, ..., g, € Qu such that gi11 € An({qi}, w;), for
all i € [1: n]. (This is true because M is an EFA; if M were an FA,

we wouldn't be able to conclude this.) O

10/36

Intersection of Grammar and EFA

Lemma 4.7.2
Let the property Pa(w), for w € My A, be
w € L(G) and w € L(M).
For p € Qg and q,r € Qu, let the property P, o »(w), for
w € My (pq.r), be
we g, andre Ay({q}, w).
Then:
(]) For all w € |_|H7/_\, PA(W).

(2) Forall p € Qg and q,r € Qu, for all w € Ty
P<p7q>r>(W)'

p,q,l’>’

Proof. We proceed by induction on 1. O

11/36

Intersection of Grammar and EFA

Lemma 4.7.3
L(H) = L(G)NL(M).

Proof. L(H) C L(G)N L(M) follows by Lemma 4.7.2(1).

For the other inclusion, suppose w € L(G) N L(M), so that

w e MNgs. and r € Ay({sm},w), for some r € Ay. By

Lemma 4.7.1, it follows that w € Iy (5. s,,,r)- But because

r € Apn, we have that A — (s, sy, r) is a production of H. Thus
welNya=LH). O

12/36

Difference of Grammar and DFA

Given a grammar G and a DFA M, we can define the difference of
G and M to be

inter(G, complement(M, alphabet G)).

This is analogous to what we did when defining the difference of
DFAs.

This gives us a function minus € Gram x DFA — Gram.

13/36

Summary of Closure Properties

Theorem 4.7.4
Suppose L, Ly, L, € CFLan and L' € RegLan. Then:

(1) L1 U Ly € CFLan;
(2) LiL, € CFLan;

(3) L* € CFLan;

(4) LN L" € CFLan, and
(5) L—L" € CFLan.

14/36

Operations on Grammars in Forlan

The Forlan module Gram defines the following constants and
operations on grammars:

val emptyStr : gram

val emptySet : gram

val fromStr ¢ str -> gram

val fromSym : sym -> gram

val union : gram * gram —> gram
val concat : gram * gram -> gram
val closure : gram -> gram

val fromStrSet : str set -> gram

val inter : gram * efa -> gram
val minus : gram * dfa -> gram

The functions fromStr and fromSym and are also available in the
top-level environment with the names

val strToGram : str -> gram
val symToGram : sym —-> gram

15/36

Forlan Examples

For example, we can construct a grammar G such that
L(G) = {01} U{10}{11}*, as follows.

- val graml
val graml =
- val gram2
val gram2 =
- val gram3
val gram3 =
- val gram

val gram = -

= strToGram(Str.fromString "01");

- : gram
= strToGram(Str.fromString "10");
- : gram
= strToGram(Str.fromString "11");
- : gram

Gram.union(grami,

Gram. concat (gram2,

Gram.closure gram3));
: gram

16 /36

Forlan Examples

- val gram’ = Gram.renameVariablesCanonically gram;
val gram’ = - : gram

- Gram.output("", gram’);

{variables} A, B, C, D, E, F {start variable} A
{productions}

A->B | C; B->01; C ->DE; D->10; E -> Y} | FE;
F -> 11
val it = () : unit

17/36

Forlan Examples

We can use Gram.fromStrSet as follows:

- val gram’’ =
= Gram.fromStrSet
(StrSet.fromString "0, 01, 010, 0101");

val gram’’ = - : gram

- val gram’’’ = Gram.renameVariablesCanonically
gram’’;

val gram’’’ = - : gram

- Gram.output("", gram’’’);

{variables} A, B, C, D, E {start variable} A
{productions}

A->B | CI|D|/E B->0; C->01; D->010;
E -> 0101

val it = () : unit

18/36

Forlan Examples

And here are examples of how we can use Gram.inter and
Gram.minus.

Let gram be the grammar
A — % | 0A1A | 1A0A,

and efa be the EFA

0 1

%
Start

19/36

Forlan Examples

- val gram’ = Gram.inter(gram, efa);
val gram’ = - : gram
- Gram.output("", gram’);

{variables} A, <A,A,A>, <A,A,B>, <A,B,B>
{start variable} A
{productions}
A -> <A,A,B>; <A,A,A> -> J;
<A,A,B> ->
% | 0<A,A,A>1<A,B,B> | O<A,A,B>1<A,B,B> |
0<A,B,B>1<A,B,B>;
<A,B,B> ->
val it = () : unit
- fun elimVars(gram, nil) = gram
| elimVars(gram, q :: gs) =

= elimVars(Gram.eliminateVariable(gram, q), gs);

val elimVars = fn : gram * sym list -> gram

20 /36

Forlan Examples

val gram’’ =

= elimVars

= (gram’,

= [Sym.fromString "<A,A,A>",

= Sym.fromString "<A,B,B>"]);
val gram’’ = - : gram

- val gram’’’ =

= Gram.renameVariablesCanonically
= (Gram.restart(Gram.simplify gram’’));
val gram’’’ = - : gram

- Gram.output("", gram’’’);

{variables} A {start variable} A
{productions} A -> 7, | 0A1

val it = () : unit

21/36

Forlan Examples

- val dfa =

= DFA.renameStatesCanonically

= (DFA.minimize (nfaToDFA(efaToNFA efa)));
val dfa = - : dfa

- val gram’’ = Gram.minus(gram, dfa);

val gram’’ = - : gram

- Gram.generated gram’’ (Str.fromString "0101");
val it = true : bool

- Gram.generated gram’’ (Str.fromString "0011");
val it = false : bool

22 /36

Grammar Synthesis Example

We'll end this section with a more sophisticated example. Define a
language X by:

X ={012%3"| i j k,/ e Nand i < / and j > k and
i+ jis even and k + / is odd }.

Is X context-free?

Yes. Let's see how Forlan can help us come up with a grammar
generating X.

23 /36

Grammar Synthesis Example
First, we put the text

{variables} A, B, <1>, <3> {start variable} A
{productions}

A -> 0A3 | B<3>;

B -> 1B2 | <1>;

<1> > 1 | 1<1>;

<3> -> 3 | 3<3>

for a grammar generating {0'172%3' | i, j, k,/ € Nand i < / and
J > k} in the file seq0123-where-01t3-and-1gt2-gram. txt.

24 /36

Grammar Synthesis Example
Next we put the text

{states} A, B {start state} A {accepting states} A

{transitions}
A, 0O ->B; A, 1 > B; A, 2 > A; A, 3 -> A;
B, O->A; B, 1->A; B, 2->B; B, 3->B

for a DFA accepting all elements of {0,1,2,3}* in which the sum
of the numbers of 0's and 1's is even in the file
evenOplusl-alp23-dfa.txt.

25 /36

Grammar Synthesis Example

Then we load the grammar and DFA into Forlan:

- val seq0123Where01t3Andlgt2Gram =

= Gram. input

= "seq0123-where-01t3-and- 1gt2 gram.txt";
val seq0123Where01t3And1gt2Gram = - : gram

- val evenOplus1Alp23DFA =

= DFA.input "evenOplusl-alp23-dfa.txt";
val evenOplus1Alp23DFA = - : dfa

26 /36

Grammar Synthesis Example

Next we carry out some standard definitions:

- val regToDFA =

= nfaToDFA o efaToNFA o faToEFA o regToFA;
val regToDFA = fn : reg -> dfa

- val minAndRen =

= DFA.renameStatesCanonically o DFA.minimize;
val minAndRen = fn : dfa -> dfa

- val syms0123 = SymSet.fromString "0, 1, 2, 3";
val syms0123 = - : sym set

- val allStrReg = Reg.closure(Reg.allSym syms0123);
val allStrReg = - : reg

- val allStrDFA = minAndRen(regToDFA allStrReg);
val allStrDFA = : dfa

27/36

Grammar Synthesis Example

Next we convert evenOplus1A1p23DFA into a DFA
0dd2plus3A1p01DFA that accepts all elements of {0,1,2,3}* in
which the sum of the numbers of 2's and 3's is odd:

- val swap23for0O1 =

= SymRel.fromString
= "0, 2), (1, 3), (2, 0), (3, D";

val swap23for01 = - : sym_rel
- val odd2plus3A1pO1DFA =

= minAndRen

= (DFA.minus

= (allStrDFA,

= DFA.renameAlphabet
= (evenOplus1A1p23DFA, swap23for01)));
val odd2plus3A1p01DFA = - : dfa

See Section 3.12 of the book for discussion of
DFA.renameAlphabet.

28 /36

Grammar Synthesis Example

Next we create a DFA evenOplus1And0dd2plus3DFA accepting

all elements of {0,1,2,3}" in which the sum of the numbers of 0's

and 1's is even, and the sum of the numbers of 2's and 3's is odd:
- val evenOplus1And0dd2plus3DFA =

= minAndRen

= (DFA.inter

= (evenOplus1A1p23DFA, odd2plus3A1p01DFA));
val evenOplusl1And0dd2plus3DFA = - : dfa

29 /36

Grammar Synthesis Example

And then we create our first grammar, gram0O, generating X:

- val gram0O =
= Gram.renameVariablesCanonically

(Gram. inter
= (seq0123Where01t3And1gt2Gram,
= injDFAToEFA evenOplus1And0dd2plus3DFA));
val gram0 = - : gram
- Gram.output("", gramO);
{variables} A, B, C, D, E, F, G, H, I, J, K, L, M
{start variable} A
{productions}
A ->B; B->DK | EM | 0C3; C -> FJ | GL | 0B3;
D->H | 1G2; E -> 1F2; F -> I | 1E2; G -> 1D2;
H->1I; I ->1 | 1H; J -> 3L; K -> 3 | 3M;
L->3] 3J; M->3K
val it = () : unit

30 /36

Grammar Synthesis Example

In the grammar gramO, there are opportunities for
hand-simplification using Forlan:

- fun elimVars(gram, nil)
= | elimVars(gram, q :: gs) =
= elimVars
(Gram.eliminateVariable
(gram, Sym.fromString q),
= 9s) ;
val elimVars = fn : gram * string list -> gram
- val graml =
= Gram.renameVariablesCanonically
= (elimVars
= (Gram.restart gramo0,
= ["E", "G", "H", "J", "M", ncn]));
val graml = - : gram

gram

31/36

Grammar Synthesis Example

- Gram.output("", grami);

{variables} A, B, C, D, E, F {start variable} A
{productions}

A -> BE | 00433 | OC3F3 | 1C23E | 01B2F3;

B -> 1D | 11B22; ¢ -> D | 11C22; D -> 1 | 11D;
E ->3 | 33E; F ->3 | 33F

val it = () : unit

- Gram.numVariables gramil;

val it = 6 : int

- Gram.numProductions gramil;

val it = 15 : int

32/36

Grammar Synthesis Example

In gram1, E and its productions, and F and its productions, have
the same form. There is no reason to have both of them, and so
we can remove F and its productions, replacing all occurrences of
F in the remaining productions by E. This gives us the grammar:

A — BE | 00A33 | 0C3E3 | 1C23E | 01B2E3
B— 1D | 11B22

C—D|11C22

D—1]11D

E— 3| 33E.

33/36

Grammar Synthesis Example

Because E generates only strings of 3's, we can replace the

occurrences of E3 on the right-hand sides of A’s productions by
3E, yielding:

A — BE | 00A33 | 0C33E | 1C23E | 01B23E
B— 1D | 11B22

C—D|11C22

D—1|11D

E— 3| 33E.

34/36

Grammar Synthesis Example

Next, we note that

Mo ={1" | meNand mis odd },

Mc = {1?"1™2%" | n,m € N and m is odd },

Mg = {1%"11M2%" | n,m € Nand m is odd }
= {11?"1m22" | n,m € N and mis odd }
= {1}Mc.

Thus we can remove B and its productions, replacing all
occurrences of B by 1C:

A — 1CE | 00A33 | 0C33E | 1C23E | 011C23E
C—D|11C22

D—1|11D
E— 3| 33E.

35 /36

Grammar Synthesis Example

Since D is only used in a production of C, we can combine the
productions of C and D, yielding

C—1]|11C|11C22.
This give us our final grammar:

A — 1CE | 00A33 | 0C33E | 1C23E | 011C23E
C—1]11C|11C22
E— 3| 33E.

or

A — 1BC | 1B23C | 0B33C | 011B23C | 00A33
B—1|11B|11B22
C—333C.

36 /36

