
4.7: Closure Properties of Context-free Languages

In this section, we define union, concatenation and closure
operations/algorithms on grammars. As a result, we will have that
the context-free languages are closed under union, concatenation
and closure.

In Section 4.10, we will see that the context-free languages aren’t
closed under intersection, complementation and set difference.

But we are able to define operations/algorithms for:

• intersecting a grammar and an empty-string finite automaton;
and

• subtracting a deterministic finite automaton from a grammar.

Thus, if L1 is a context-free language, and L2 is a regular
language, we will have that L1 ∩ L2 and L1 − L2 are context-free.

The book shows several additional closure properties of
context-free languages, in addition to giving the corresponding
operations on grammars.
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Basic Grammars and Operations on Grammars

The grammar, emptyStr, with variable A and production A→%
generates the language {%}.

The grammar, emptySet, with variable A and no productions
generates the language ∅.

If w is a string, then the grammar with variable A and production
A→ w generates the language {w}. Actually, we must be careful
to chose a variable that doesn’t occur in w . We can do that by
adding as many nested < and > around A as needed (A, <A>,
<<A>>, etc.).

This defines functions strToGram ∈ Str→ Gram and
symToGram ∈ Sym→ Gram.
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Union Operation

Suppose G1 and G2 are grammars. We can define a grammar H
such that L(H) = L(G1) ∪ L(G2) by unioning together the variables
and productions of G1 and G2, and adding a new start variable q,
along with productions

q → sG1
| sG2

.

What do we have to know about G1, G2 and q for the above to be
valid?

• QG1
∩ QG2

= ∅ and q 6∈ QG1
∪ QG2

; and

• alphabetG1 ∩ QG2
= ∅, alphabetG2 ∩ QG1

= ∅ and
q 6∈ alphabetG1 ∪ alphabetG2.

3 / 36



Union Operation

Our official union operation for grammars renames the variables of
G1 and G2, and chooses the start variable q, in a uniform way that
makes the preceding properties hold.

This gives us a function union ∈ Gram× Gram→ Gram.

We do something similar when defining the other closure
operations. In what follows, though, we’ll ignore this issue, so as to
keep things simple.
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Concatenation and Closure Operations

Suppose G1 and G2 are grammars. We can define a grammar H
such that L(H) = L(G1)L(G2) by unioning together the variables
and productions of G1 and G2, and adding a new start variable q,
along with production

q → sG1
sG2

.

This gives us a function concat ∈ Gram× Gram→ Gram.

Suppose G is a grammar. We can define a grammar H such that
L(H) = L(G )∗ by adding to the variables and productions of G a
new start variable q, along with productions

q →% | sGq.

This gives us a function closure ∈ Gram→ Gram.
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Intersection of Grammar and EFA

We now consider an algorithm for intersecting a grammar G with
an EFA M, resulting in simplifyH, where the grammar H is
defined as follows.

For all p ∈ QG and q, r ∈ QM , H has a variable 〈p, q, r〉 that
generates

{w ∈ (alphabetG )∗ | w ∈ ΠG ,p and r ∈ ∆M({q},w) }.

The remaining variable of H is A, which is its start variable.
For each r ∈ AM , H has a production

A→ 〈sG ,sM ,r〉.

For each %-production p →% of G and q, r ∈ QM , if
r ∈ ∆M({q},%), then H will have the production

〈p, q, r〉 →%.
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Intersection of Grammar and EFA

To say what the remaining productions of H are, define a function

f ∈ (alphabetG ∪QG )× QM × QM → alphabetG ∪QH

by: for all a ∈ alphabetG ∪ QG and q, r ∈ QM ,

f (a, q, r) =

{

a, if a ∈ alphabetG , and
〈a, q, r〉, if a ∈ QG .

For all p ∈ QG , n ∈ N− {0}, a1, . . . , an ∈ Sym and
q1, . . . , qn+1 ∈ QM , if

• p → a1 · · · an ∈ PG , and
• for all i ∈ [1 : n], if ai ∈ alphabetG , then

qi+1 ∈ ∆M({qi}, ai ),

then we let

〈p, q1, qn+1〉 → f (a1, q1, q2) · · · f (an, qn, qn+1)

be production of H.
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Intersection of Grammar and EFA

This gives us a function inter ∈ Gram× EFA→ Gram.

For example, let G be the grammar

A→% | 0A1A | 1A0A,

and M be the EFA

Start A B
%

0 1

so that G generates all elements of {0, 1}∗ with an equal number
of 0’s and 1’s, and M accepts {0}∗{1}∗.
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Intersection of Grammar and EFA

Then simplifyH is

A→ 〈A,A,B〉,

〈A,A,A〉 →%,

〈A,A,B〉 →%,

〈A,A,B〉 → 0〈A,A,A〉1〈A,B,B〉,

〈A,A,B〉 → 0〈A,A,B〉1〈A,B,B〉,

〈A,A,B〉 → 0〈A,B,B〉1〈A,B,B〉,

〈A,B,B〉 →%.

Note that simplification eliminated the variable 〈A,B,A〉. If we
hand simplify further, we can turn this into:

A→ 〈A,A,B〉,

〈A,A,B〉 →% | 0〈A,A,B〉1
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Intersection of Grammar and EFA

To prove that our intersection algorithm is correct, we’ll need two
lemmas.

Lemma 4.7.1

For p ∈ QG , let the property Pp(w), for w ∈ ΠG ,p, be:

for all q, r ∈ QM , if r ∈ ∆M({q},w), then w ∈ ΠH,〈p,q,r〉.

Then, for all p ∈ QG , for all w ∈ ΠG ,p, Pp(w).

Proof. By induction on Π. We use the fact that, if n ∈ N− {0},
q1, qn+1 ∈ QM , w1, . . . ,wn ∈ Str and qn+1 ∈ ∆M({q1},w1 · · ·wn),
then there are q2, . . . , qn ∈ QM such that qi+1 ∈ ∆M({qi},wi ), for
all i ∈ [1 : n]. (This is true because M is an EFA; if M were an FA,
we wouldn’t be able to conclude this.) ✷
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Intersection of Grammar and EFA

Lemma 4.7.2

Let the property PA(w), for w ∈ ΠH,A, be

w ∈ L(G ) and w ∈ L(M).

For p ∈ QG and q, r ∈ QM , let the property P〈p,q,r〉(w), for
w ∈ ΠH,〈p,q,r〉, be

w ∈ ΠG ,p and r ∈ ∆M({q},w).

Then:

(1) For all w ∈ ΠH,A, PA(w).

(2) For all p ∈ QG and q, r ∈ QM , for all w ∈ ΠH,〈p,q,r〉,

P〈p,q,r〉(w).

Proof. We proceed by induction on Π. ✷
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Intersection of Grammar and EFA

Lemma 4.7.3

L(H) = L(G ) ∩ L(M).

Proof. L(H) ⊆ L(G ) ∩ L(M) follows by Lemma 4.7.2(1).

For the other inclusion, suppose w ∈ L(G ) ∩ L(M), so that
w ∈ ΠG ,sG and r ∈ ∆M({sM},w), for some r ∈ AM . By
Lemma 4.7.1, it follows that w ∈ ΠH,〈sG ,sM ,r〉. But because
r ∈ AM , we have that A→ 〈sG , sM , r〉 is a production of H. Thus
w ∈ ΠH,A = L(H). ✷
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Difference of Grammar and DFA

Given a grammar G and a DFA M, we can define the difference of
G and M to be

inter(G , complement(M, alphabetG )).

This is analogous to what we did when defining the difference of
DFAs.

This gives us a function minus ∈ Gram×DFA→ Gram.

13 / 36



Summary of Closure Properties

Theorem 4.7.4

Suppose L, L1, L2 ∈ CFLan and L′ ∈ RegLan. Then:

(1) L1 ∪ L2 ∈ CFLan;

(2) L1L2 ∈ CFLan;

(3) L∗ ∈ CFLan;

(4) L ∩ L′ ∈ CFLan; and

(5) L− L′ ∈ CFLan.
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Operations on Grammars in Forlan

The Forlan module Gram defines the following constants and
operations on grammars:

val emptyStr : gram

val emptySet : gram

val fromStr : str -> gram

val fromSym : sym -> gram

val union : gram * gram -> gram

val concat : gram * gram -> gram

val closure : gram -> gram

val fromStrSet : str set -> gram

val inter : gram * efa -> gram

val minus : gram * dfa -> gram

The functions fromStr and fromSym and are also available in the
top-level environment with the names

val strToGram : str -> gram

val symToGram : sym -> gram
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Forlan Examples

For example, we can construct a grammar G such that
L(G ) = {01} ∪ {10}{11}∗ , as follows.

- val gram1 = strToGram(Str.fromString "01");

val gram1 = - : gram

- val gram2 = strToGram(Str.fromString "10");

val gram2 = - : gram

- val gram3 = strToGram(Str.fromString "11");

val gram3 = - : gram

- val gram =

= Gram.union(gram1,

= Gram.concat(gram2,

= Gram.closure gram3));

val gram = - : gram
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Forlan Examples

- val gram’ = Gram.renameVariablesCanonically gram;

val gram’ = - : gram

- Gram.output("", gram’);

{variables} A, B, C, D, E, F {start variable} A

{productions}

A -> B | C; B -> 01; C -> DE; D -> 10; E -> % | FE;

F -> 11

val it = () : unit
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Forlan Examples

We can use Gram.fromStrSet as follows:

- val gram’’ =

= Gram.fromStrSet

= (StrSet.fromString "0, 01, 010, 0101");

val gram’’ = - : gram

- val gram’’’ = Gram.renameVariablesCanonically

gram’’;

val gram’’’ = - : gram

- Gram.output("", gram’’’);

{variables} A, B, C, D, E {start variable} A

{productions}

A -> B | C | D | E; B -> 0; C -> 01; D -> 010;

E -> 0101

val it = () : unit
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Forlan Examples

And here are examples of how we can use Gram.inter and
Gram.minus.

Let gram be the grammar

A→% | 0A1A | 1A0A,

and efa be the EFA

Start A B
%

0 1
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Forlan Examples

- val gram’ = Gram.inter(gram, efa);

val gram’ = - : gram

- Gram.output("", gram’);

{variables} A, <A,A,A>, <A,A,B>, <A,B,B>

{start variable} A

{productions}

A -> <A,A,B>; <A,A,A> -> %;

<A,A,B> ->

% | 0<A,A,A>1<A,B,B> | 0<A,A,B>1<A,B,B> |

0<A,B,B>1<A,B,B>;

<A,B,B> -> %

val it = () : unit

- fun elimVars(gram, nil) = gram

= | elimVars(gram, q :: qs) =

= elimVars(Gram.eliminateVariable(gram, q), qs);

val elimVars = fn : gram * sym list -> gram
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Forlan Examples

- val gram’’ =

= elimVars

= (gram’,

= [Sym.fromString "<A,A,A>",

= Sym.fromString "<A,B,B>"]);

val gram’’ = - : gram

- val gram’’’ =

= Gram.renameVariablesCanonically

= (Gram.restart(Gram.simplify gram’’));

val gram’’’ = - : gram

- Gram.output("", gram’’’);

{variables} A {start variable} A

{productions} A -> % | 0A1

val it = () : unit
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Forlan Examples

- val dfa =

= DFA.renameStatesCanonically

= (DFA.minimize(nfaToDFA(efaToNFA efa)));

val dfa = - : dfa

- val gram’’ = Gram.minus(gram, dfa);

val gram’’ = - : gram

- Gram.generated gram’’ (Str.fromString "0101");

val it = true : bool

- Gram.generated gram’’ (Str.fromString "0011");

val it = false : bool

22 / 36



Grammar Synthesis Example

We’ll end this section with a more sophisticated example. Define a
language X by:

X = { 0i1j2k3l | i , j , k , l ∈ N and i < l and j > k and

i + j is even and k + l is odd }.

Is X context-free?

Yes. Let’s see how Forlan can help us come up with a grammar
generating X .
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Grammar Synthesis Example

First, we put the text

{variables} A, B, <1>, <3> {start variable} A

{productions}

A -> 0A3 | B<3>;

B -> 1B2 | <1>;

<1> -> 1 | 1<1>;

<3> -> 3 | 3<3>

for a grammar generating { 0i1j2k3l | i , j , k , l ∈ N and i < l and
j > k } in the file seq0123-where-0lt3-and-1gt2-gram.txt.
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Grammar Synthesis Example

Next we put the text

{states} A, B {start state} A {accepting states} A

{transitions}

A, 0 -> B; A, 1 -> B; A, 2 -> A; A, 3 -> A;

B, 0 -> A; B, 1 -> A; B, 2 -> B; B, 3 -> B

for a DFA accepting all elements of {0, 1, 2, 3}∗ in which the sum
of the numbers of 0’s and 1’s is even in the file
even0plus1-alp23-dfa.txt.
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Grammar Synthesis Example

Then we load the grammar and DFA into Forlan:

- val seq0123Where0lt3And1gt2Gram =

= Gram.input

= "seq0123-where-0lt3-and-1gt2-gram.txt";

val seq0123Where0lt3And1gt2Gram = - : gram

- val even0plus1Alp23DFA =

= DFA.input "even0plus1-alp23-dfa.txt";

val even0plus1Alp23DFA = - : dfa
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Grammar Synthesis Example

Next we carry out some standard definitions:

- val regToDFA =

= nfaToDFA o efaToNFA o faToEFA o regToFA;

val regToDFA = fn : reg -> dfa

- val minAndRen =

= DFA.renameStatesCanonically o DFA.minimize;

val minAndRen = fn : dfa -> dfa

- val syms0123 = SymSet.fromString "0, 1, 2, 3";

val syms0123 = - : sym set

- val allStrReg = Reg.closure(Reg.allSym syms0123);

val allStrReg = - : reg

- val allStrDFA = minAndRen(regToDFA allStrReg);

val allStrDFA = - : dfa
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Grammar Synthesis Example

Next we convert even0plus1Alp23DFA into a DFA
odd2plus3Alp01DFA that accepts all elements of {0, 1, 2, 3}∗ in
which the sum of the numbers of 2’s and 3’s is odd:

- val swap23for01 =

= SymRel.fromString

= "(0, 2), (1, 3), (2, 0), (3, 1)";

val swap23for01 = - : sym_rel

- val odd2plus3Alp01DFA =

= minAndRen

= (DFA.minus

= (allStrDFA,

= DFA.renameAlphabet

= (even0plus1Alp23DFA, swap23for01)));

val odd2plus3Alp01DFA = - : dfa

See Section 3.12 of the book for discussion of
DFA.renameAlphabet.
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Grammar Synthesis Example

Next we create a DFA even0plus1AndOdd2plus3DFA accepting
all elements of {0, 1, 2, 3}∗ in which the sum of the numbers of 0’s
and 1’s is even, and the sum of the numbers of 2’s and 3’s is odd:

- val even0plus1AndOdd2plus3DFA =

= minAndRen

= (DFA.inter

= (even0plus1Alp23DFA, odd2plus3Alp01DFA));

val even0plus1AndOdd2plus3DFA = - : dfa
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Grammar Synthesis Example

And then we create our first grammar, gram0, generating X :

- val gram0 =

= Gram.renameVariablesCanonically

= (Gram.inter

= (seq0123Where0lt3And1gt2Gram,

= injDFAToEFA even0plus1AndOdd2plus3DFA));

val gram0 = - : gram

- Gram.output("", gram0);

{variables} A, B, C, D, E, F, G, H, I, J, K, L, M

{start variable} A

{productions}

A -> B; B -> DK | EM | 0C3; C -> FJ | GL | 0B3;

D -> H | 1G2; E -> 1F2; F -> I | 1E2; G -> 1D2;

H -> 1I; I -> 1 | 1H; J -> 3L; K -> 3 | 3M;

L -> 3 | 3J; M -> 3K

val it = () : unit
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Grammar Synthesis Example

In the grammar gram0, there are opportunities for
hand-simplification using Forlan:

- fun elimVars(gram, nil) = gram

= | elimVars(gram, q :: qs) =

= elimVars

= (Gram.eliminateVariable

= (gram, Sym.fromString q),

= qs);

val elimVars = fn : gram * string list -> gram

- val gram1 =

= Gram.renameVariablesCanonically

= (elimVars

= (Gram.restart gram0,

= ["E", "G", "H", "J", "M", "C"]));

val gram1 = - : gram
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Grammar Synthesis Example

- Gram.output("", gram1);

{variables} A, B, C, D, E, F {start variable} A

{productions}

A -> BE | 00A33 | 0C3F3 | 1C23E | 01B2F3;

B -> 1D | 11B22; C -> D | 11C22; D -> 1 | 11D;

E -> 3 | 33E; F -> 3 | 33F

val it = () : unit

- Gram.numVariables gram1;

val it = 6 : int

- Gram.numProductions gram1;

val it = 15 : int
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Grammar Synthesis Example

In gram1, E and its productions, and F and its productions, have
the same form. There is no reason to have both of them, and so
we can remove F and its productions, replacing all occurrences of
F in the remaining productions by E. This gives us the grammar:

A→ BE | 00A33 | 0C3E3 | 1C23E | 01B2E3

B→ 1D | 11B22

C→ D | 11C22

D→ 1 | 11D

E→ 3 | 33E.
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Grammar Synthesis Example

Because E generates only strings of 3’s, we can replace the
occurrences of E3 on the right-hand sides of A’s productions by
3E, yielding:

A→ BE | 00A33 | 0C33E | 1C23E | 01B23E

B→ 1D | 11B22

C→ D | 11C22

D→ 1 | 11D

E→ 3 | 33E.
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Grammar Synthesis Example

Next, we note that

ΠD = { 1m | m ∈ N and m is odd },

ΠC = { 12n1m22n | n,m ∈ N and m is odd },

ΠB = { 12n11m22n | n,m ∈ N and m is odd }

= { 112n1m22n | n,m ∈ N and m is odd }

= {1}ΠC.

Thus we can remove B and its productions, replacing all
occurrences of B by 1C:

A→ 1CE | 00A33 | 0C33E | 1C23E | 011C23E

C→ D | 11C22

D→ 1 | 11D

E→ 3 | 33E.
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Grammar Synthesis Example

Since D is only used in a production of C, we can combine the
productions of C and D, yielding

C→ 1 | 11C | 11C22.

This give us our final grammar:

A→ 1CE | 00A33 | 0C33E | 1C23E | 011C23E

C→ 1 | 11C | 11C22

E→ 3 | 33E.

or

A→ 1BC | 1B23C | 0B33C | 011B23C | 00A33

B→ 1 | 11B | 11B22

C→ 3 | 33C.
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