4.5: Proving the Correctness of Grammars

In this section, we consider techniques for proving the correctness
of grammars, i.e., for proving that grammars generate the
languages we want them to.
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Definition of Tl
Suppose G is a grammar and a € Qg U alphabet G. Then
Mg, = {w € (alphabet G)* | w is parsable from a using G }.

If it's clear which grammar we are talking about, we often
abbreviate [1g , to [1,.

Clearly, Mg s, =
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Definition of Tl

Suppose G is a grammar and a € Qg U alphabet G. Then
Mg, = {w € (alphabet G)* | w is parsable from a using G }.

If it's clear which grammar we are talking about, we often
abbreviate [1g , to [1,.

Clearly, Mg s, = L(G).

For example, if G is the grammar
A — % | 0A1

then My = {0}, My = {1} and Ma = {0"1" | n € N} = L(G).
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Properties of T

Proposition 4.5.1
Suppose G is a grammar.

(1) For all a € alphabet G, lN¢ , =
(2) Forall g € Qg, if q— % € Pg, then € Tlgq.
(3) Forall g € Qg, n € N—{0}, a1,...,a, € Sym and

Wi,...,w, €Str, ifq—a1---a, € Pg and wy € lg 5, ...

w, € Mg ,,, then €lgq.
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Main Example
Define diff € {0,1}* — Z by: for all w € {0,1}*,

diff w = the number of 1's in w — the number of 0's in w.

Then:
e diff % = 0;
e diff1 = 1;

e diff 0 = —1; and
e for all x,y € {0,1}*, diff(xy) = diff x + diff y.
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Main Example

Our main example will be the grammar G:

A — % | OBA | 1CA,
B—1|0BB,
C—0]|1CC.

Let

X ={we{0,1} | diffw=0},
Y = {w € {0,1}* | diff w = 1 and,

Z={we{0,1}|diffw=—1and,

We will prove that L(G) =TNga =X, MNgg =Y and MNgc = Z.
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A — % | OBA | 1CA,
B—1|0BB,
C—0]|1CC.

Let

X={we{0,1}" |diffw=0},
Y ={we{0,1}" | diff w =1 and,

for all proper prefixes v of w,diff v <0},
Z={we{0,1}" | diff w = —1 and,

for all proper prefixes v of w,diff v > 0}.

We will prove that L(G) =TNga =X, MNgg =Y and MNgc = Z.
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Main Example

Lemma 4.5.2

Suppose x € {0,1}*.

(1) If diff x > 1, then x = yz for some y,z € {0,1}* such that
y €Y and diff z = diff x — 1.

(2) If diff x < —1, then x = yz for some y,z € {0,1}* such that
y € Z and diff z = diff x + 1.

The proof is in the book.
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Proving that Enough is Generated
First we study techniques for showing that everything we want a
grammar to generate is really generated.
Since X, Y,Z C {0,1}*, to prove that X C Mg a, Y Clgg and
Z C Mg ¢, it will suffice to use strong string induction to show
that, for all w € {0,1}*:
(A) if we X, then w € Mg a;
(B) if we Y, then w € g g; and
(C) if we Z, then w € I_IG,C-
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Enough is Generated in FExample

We proceed by strong string induction. Suppose w € {0,1}*, and
assume the inductive hypothesis: for all x € {0,1}*, if x is a
proper substring of w, then:

(A) if x € X, then x € [Ny;

(B) if x € Y, then x € INg; and
(C) if x € Z, then x € INc.

We must prove that:

(A) if we X, then w € lNy;

(B) if w e Y, then w € lNg; and
(C) if we Z, then w €.
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Enough is Generated in FExample

(A) Suppose w € X. We must show that w € 5. There are
three cases to consider.

® Suppose w = %. Because A — % € P, we have that
w=5%¢€¢ Ma.
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Enough is Generated in FExample

(A) Suppose w € X. We must show that w € 5. There are
three cases to consider.

® Suppose w = %. Because A — % € P, we have that
w=5%¢€¢ Ma.

® Suppose w = 0x, for some x € {0,1}*. Because
—1 + diff x = diff w = 0, we have that diff x = 1. Thus, by
Lemma 4.5.2(1), we have that x = yz, for some y,z € {0,1}*
such that y € Y and diff z =diff x —1=1—-1=0. Thus
w=0yz, y € Y and z € X. We have 0 € [y. Because y € Y
and z € X
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three cases to consider.

Suppose w = %. Because A — % € P, we have that

w=5%¢€¢ Ma.

Suppose w = 0x, for some x € {0,1}*. Because

—1 + diff x = diff w = 0, we have that diff x = 1. Thus, by
Lemma 4.5.2(1), we have that x = yz, for some y,z € {0,1}*
such that y € Y and diff z =diff x —1=1—-1=0. Thus
w=0yz, y € Y and z € X. We have 0 € [y. Because y € Y
and z € X are proper substrings of w, parts (B) and (A) of the
inductive hypothesis tell us that y € g and z € [a. Thus,
because A — 0BA € P, it follows that that w = Oyz € a.
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Enough is Generated in FExample

(A) Suppose w € X. We must show that w € 5. There are
three cases to consider.

Suppose w = %. Because A — % € P, we have that

w=5%¢€¢ Ma.

Suppose w = 0x, for some x € {0,1}*. Because

—1 + diff x = diff w = 0, we have that diff x = 1. Thus, by
Lemma 4.5.2(1), we have that x = yz, for some y,z € {0,1}*
such that y € Y and diff z =diff x —1=1—-1=0. Thus
w=0yz, y € Y and z € X. We have 0 € [y. Because y € Y
and z € X are proper substrings of w, parts (B) and (A) of the
inductive hypothesis tell us that y € g and z € [a. Thus,
because A — 0BA € P, it follows that that w = Oyz € a.
Suppose w = 1x, for some x € {0,1}*. The proof is analogous
to the preceding case.

9/20



Enough is Generated in FExample

(B) Suppose w € Y. We must show that w € lg. Because
diff w = 1, there are two cases to consider.

® Suppose w = 1x, for some x € {0, 1}*.
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Enough is Generated in FExample

(B) Suppose w € Y. We must show that w € lg. Because
diff w = 1, there are two cases to consider.
® Suppose w = 1x, for some x € {0,1}*. Because all proper
prefixes of w have diffs < 0, we have that x = %, so that
w =1. Since B—1 & P, we have that w =1 € [.
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Enough is Generated in FExample

(B) Suppose w € Y. We must show that w € lg. Because
diff w = 1, there are two cases to consider.

® Suppose w = 1x, for some x € {0,1}*. Because all proper
prefixes of w have diffs < 0, we have that x = %, so that
w =1. Since B—1 & P, we have that w =1 € [.

® Suppose w = 0x, for some x € {0,1}*. Thus diff x = 2.
Because diff x > 1, by Lemma 4.5.2(1), we have that x = yz,
for some y,z € {0,1}* such that y € Y and
diff z =diff x —1=2—-1=1. Hence w = Qyz.
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w =1. Since B—1 & P, we have that w =1 € [.

® Suppose w = 0x, for some x € {0,1}*. Thus diff x = 2.
Because diff x > 1, by Lemma 4.5.2(1), we have that x = yz,
for some y,z € {0,1}* such that y € Y and
diff z =diffx —1=2—-1=1. Hence w = Oyz. To finish the
proof that z € Y, suppose v is a proper prefix of z. Thus Oyv
is a proper prefix of w. Since w € Y/, it follows that
diff v = diff (Oyv) < 0, as required. Since y,z € Y, part (B)
of the inductive hypothesis tell us that y,z € lg. Thus,
because B — 0BB € P we have that w = 0yz € ;.
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Enough is Generated in FExample

(B) Suppose w € Y. We must show that w € lg. Because
diff w = 1, there are two cases to consider.

® Suppose w = 1x, for some x € {0,1}*. Because all proper
prefixes of w have diffs < 0, we have that x = %, so that
w =1. Since B—1 & P, we have that w =1 € [.

® Suppose w = 0x, for some x € {0,1}*. Thus diff x = 2.
Because diff x > 1, by Lemma 4.5.2(1), we have that x = yz,
for some y,z € {0,1}* such that y € Y and
diff z =diffx —1=2—-1=1. Hence w = Oyz. To finish the
proof that z € Y, suppose v is a proper prefix of z. Thus Oyv
is a proper prefix of w. Since w € Y/, it follows that
diff v = diff (Oyv) < 0, as required. Since y,z € Y, part (B)
of the inductive hypothesis tell us that y,z € lg. Thus,
because B — 0BB € P we have that w = 0yz € ;.

(C) Suppose w € Z. We must show that w € lN¢. The proof is
analogous to the proof of part (B).
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A Problem with Unit Productions

Suppose H is the grammar
A — B | 0A3, B— % | 1B2,
and let
X ={0"1"2"3" | n,me N} and Y ={1"2"|meN}
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A Problem with Unit Productions

Suppose H is the grammar
A — B | 0A3, B— % | 1B2,
and let
X ={0"1"2"3" | n,me N} and Y ={1"2"|meN}

We can prove that X C My = L(H) and Y C Iy g using the
above technique, but the production A — B, which is called a unit
production because its right side is a single variable, makes

part (A) tricky. If w =001m2m30 = 1m2™ ¢ Y we would like to
use part (B) of the inductive hypothesis to conclude w € lNg, and
then use the fact that A — B € P to conclude that w € [x.
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A Problem with Unit Productions

Suppose H is the grammar
A — B | 0A3, B— % | 1B2,
and let
X ={0"1"2"3" | n,me N} and Y ={1"2"|meN}

We can prove that X C My = L(H) and Y C Iy g using the
above technique, but the production A — B, which is called a unit
production because its right side is a single variable, makes

part (A) tricky. If w =001m2m30 = 1m2™ ¢ Y we would like to
use part (B) of the inductive hypothesis to conclude w € lNg, and
then use the fact that A — B € P to conclude that w € 1. But
w is not a proper substring of itself, and so the inductive
hypothesis in not applicable. Instead, we must split into cases

m =0 and m>1, using A— B and B — %, in the first case, and
A — B and B — 1B2, as well as the inductive hypothesis on

1m=12m=1 Y in the second case. %0



A Problem with Unit Productions

Because there are no productions from B back to A, we could also
first use strong string induction to prove that, for all w € {0,1}*,

(B) if we Y, then w € lNg,

and then use the result of this induction along with strong string
induction to prove that for all w € {0,1}*,

(A) if we X, then w € lNa.

This works whenever two parts of a grammar are not mutually
recursive.
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A Problem with Unit Productions

Because there are no productions from B back to A, we could also
first use strong string induction to prove that, for all w € {0,1}*,
(B) if we Y, then w € lNg,

and then use the result of this induction along with strong string
induction to prove that for all w € {0,1}*,

(A) if we X, then w € lNa.

This works whenever two parts of a grammar are not mutually
recursive.

With this grammar, we could also first use mathematical induction
to prove that, for all m € N, 12" € g, and then use the result

of this induction to prove, by mathematical induction on n, that
for all n,m e N, 0"1M273" € [a.

12/20



A Problem with %-Productions

Note that %-productions, i.e., productions of the form g — %, can
cause similar problems to those caused by unit productions. E.g., if
we have the productions

A—BC and B— %,

then A — BC behaves like a unit production.
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Proving that Everything Generated 1s Wanted

To prove that everything generated by a grammar is wanted, we
introduce a new induction principle that we call induction on T1.
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Principle of Induction on [l

Theorem 4.5.3 (Principle of Induction on 1)

Suppose G is a grammar, Py(w) is a property of a string w € g 4,
for all g € Qg, and P,(w), for a € alphabet G, says ‘w = a".

If

(1) for all g € Qg, if g— % € Pg, then Py(%), and

(2) for all g € Qg, n € N—{0}, a1,...,an, € Q¢ U alphabet G,
andwy € Mg a, ..., wa€lg,, ifqg—a1---a, € Pg and
(1) then Pg(wy - - wy),

then

for all g € Qg, for all w € Mg g, Pg(w).

We refer to () as the inductive hypothesis.
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for all g € Qg, and P,(w), for a € alphabet G, says ‘w = a".

If

(1) for all g € Qg, if g— % € Pg, then Py(%), and

(2) for all g € Qg, n € N—{0}, a1,...,an, € Q¢ U alphabet G,
andwy € Mg a, ..., wa€lg,, ifqg—a1---a, € Pg and
(1) Pay(w1), ..., Pa,(wp), then Py(wy --- wy),

then

for all g € Qg, for all w € Mg g, Pg(w).

We refer to () as the inductive hypothesis.
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Principle of Induction on [l

Proof. It suffices to show that, for all pt € PT, for all g € Q¢
and w € (alphabet G)*, if pt is valid for G, rootLabel pt = g and
yield pt = w, then P,(w). We prove this using the principle of
induction on parse trees. O
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Principle of Induction on [l

Proof. It suffices to show that, for all pt € PT, for all g € Q¢
and w € (alphabet G)*, if pt is valid for G, rootLabel pt = g and
yield pt = w, then P,(w). We prove this using the principle of
induction on parse trees. O

When proving part (2), we can make use of the fact that, for
a; € alphabet G, I,, = {a;}, so that w; € I, will be a;. Hence it
will be unnecessary to assume that P, (a;), since this says

“aj = a;", and so is always true.
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Using Induction on 1 in Example
Consider, again, our main example grammar G:
A — % | OBA | 1CA,

B—1|0BB,
C—0]1CC.

Let

X={we{0,1}" |diffw =0},
Y={we{0,1}"|diffw =1 and,

for all proper prefixes v of w,diff v <0}, and
Z={we{0,1}" | diff w = —1 and,

for all proper prefixes v of w,diff v >0 }.

17/20



Using Induction on 1 in Example

We have already proven that X C Na = L(G), Y C Mg and

Z CMc. To complete the proof that L(G) =Ma =X, Mg =Y
and ¢ = Z, we will use induction on I1 to prove that Ny C X,
Mg C YandIlc C Z.

We use induction on I1 to show that:

(A) for all w € A, w € X;

(B) for all w € Mg, w € Y; and

(C) forall welle, we Z.

Formally, this means that we let the properties Pa(w), Pg(w) and
Pc(w) be "w € X", “w € Y” and "w € Z", respectively, and
then use the induction principle to prove that, for all g € Q¢, for
all w € Mg, Pg(w). But we will actually work more informally.
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Using Induction on 1 in Example

There are seven productions to consider.

® (A — %) We must show that % € X (as “w € X" is the
property of part (A)). And this holds since diff % = 0.
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Using Induction on 1 in Example

There are seven productions to consider.

® (A — %) We must show that % € X (as “w € X" is the
property of part (A)). And this holds since diff % = 0.

® (A — OBA) Suppose w; € Ng and w, € M (as 0BA is the
right-side of the production, and 0 is in G's alphabet), and
assume the inductive hypothesis, w; € Y (as this is the
property of part (B)) and wy € X (as this is the property of
part (A)). We must show that Owyws € X, as the production
shows that Owyws, € s, Because wy € Y and wy € X, we
have that diff w; = 1 and diff wo, = 0. Thus
diff(Owywy) = —1+ 1+ 0 = 0, showing that Owyw, € X.
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Using Induction on 1 in Example

® (B — 0BB) Suppose wi, w, € Mg, and assume the inductive
hypothesis, wy, ws € Y. Thus wy and wy are nonempty. We
must show that Owyw, € Y. Clearly,
diff(Owywyp) = =1+ 1+ 1= 1. So, suppose v is a proper
prefix of Owywy. We must show that diff v < 0.
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® (B — 0BB) Suppose wi, w, € Mg, and assume the inductive
hypothesis, wy, ws € Y. Thus wy and wy are nonempty. We
must show that Owyw, € Y. Clearly,
diff(Owywyp) = =1+ 1+ 1= 1. So, suppose v is a proper
prefix of Owywy. We must show that diff v < 0. There are
three cases to consider.
® Suppose v =%. Then diff v =0 < 0.
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Using Induction on 1 in Example

® (B — 0BB) Suppose wi, w, € Mg, and assume the inductive
hypothesis, wy, ws € Y. Thus wy and wy are nonempty. We
must show that Owyw, € Y. Clearly,
diff(Owywyp) = =1+ 1+ 1= 1. So, suppose v is a proper
prefix of Owywy. We must show that diff v < 0. There are
three cases to consider.
® Suppose v =%. Then diff v =0 < 0.
® Suppose v = Qu, for a proper prefix u of wy. Because wy € Y,
we have that diff u < 0. Thus
diff v = -1 +diffu < -14+0<0.
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Using Induction on 1 in Example

® (B — 0BB) Suppose wi, w, € Mg, and assume the inductive
hypothesis, wy, ws € Y. Thus wy and wy are nonempty. We
must show that Owyw, € Y. Clearly,
diff(Owywyp) = =1+ 1+ 1= 1. So, suppose v is a proper
prefix of Owywy. We must show that diff v < 0. There are
three cases to consider.
® Suppose v =%. Then diff v =0 < 0.
® Suppose v = Qu, for a proper prefix u of wy. Because wy € Y,
we have that diff u < 0. Thus
diff v = -1 +diffu < -14+0<0.
® Suppose v = Ow; u, for a proper prefix u of wy. Because
ws € Y, we have that diff u < 0. Thus
diff v = -1+ 1 4+ diff u = diff u < 0.

20 /20



Using Induction on 1 in Example

® (B — 0BB) Suppose wi, w, € Mg, and assume the inductive
hypothesis, wy, ws € Y. Thus wy and wy are nonempty. We
must show that Owyw, € Y. Clearly,
diff(Owywyp) = =1+ 1+ 1= 1. So, suppose v is a proper
prefix of Owywy. We must show that diff v < 0. There are
three cases to consider.
® Suppose v =%. Then diff v =0 < 0.
® Suppose v = Qu, for a proper prefix u of wy. Because wy € Y,
we have that diff u < 0. Thus
diff v = -1 +diffu < -14+0<0.
® Suppose v = Ow; u, for a proper prefix u of wy. Because
ws € Y, we have that diff u < 0. Thus
diff v = -1+ 1 4+ diff u = diff u < 0.

® The remaining productions are handled similarly.
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