
4.5: Proving the Correctness of Grammars

In this section, we consider techniques for proving the correctness
of grammars, i.e., for proving that grammars generate the
languages we want them to.
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Definition of Π

Suppose G is a grammar and a ∈ QG ∪ alphabetG . Then
ΠG ,a = {w ∈ (alphabetG )∗ | w is parsable from a using G }.

If it’s clear which grammar we are talking about, we often
abbreviate ΠG ,a to Πa.

Clearly, ΠG ,sG =
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Properties of Π

Proposition 4.5.1
Suppose G is a grammar.

(1) For all a ∈ alphabetG, ΠG ,a =

(2) For all q ∈ QG , if q →% ∈ PG , then ∈ ΠG ,q.

(3) For all q ∈ QG , n ∈ N− {0}, a1, . . . , an ∈ Sym and
w1, . . . ,wn ∈ Str, if q → a1 · · · an ∈ PG and w1 ∈ ΠG ,a1 , . . . ,
wn ∈ ΠG ,an , then ∈ ΠG ,q.
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Main Example

Define diff ∈ {0, 1}∗ → Z by: for all w ∈ {0, 1}∗,

diff w = the number of 1’s in w − the number of 0’s in w .

Then:

• diff % = 0;

• diff 1 = 1;

• diff 0 = −1; and

• for all x , y ∈ {0, 1}∗, diff(xy) = diff x + diff y .
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Main Example

Our main example will be the grammar G :

A→% | 0BA | 1CA,

B→ 1 | 0BB,

C→ 0 | 1CC.

Let

X = {w ∈ {0, 1}∗ | diff w = 0 },

Y = {w ∈ {0, 1}∗ | diff w = 1 and,

Z = {w ∈ {0, 1}∗ | diff w = −1 and,

We will prove that L(G ) = ΠG ,A = X , ΠG ,B = Y and ΠG ,C = Z .
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Main Example

Lemma 4.5.2
Suppose x ∈ {0, 1}∗.

(1) If diff x ≥ 1, then x = yz for some y , z ∈ {0, 1}∗ such that
y ∈ Y and diff z = diff x − 1.

(2) If diff x ≤ −1, then x = yz for some y , z ∈ {0, 1}∗ such that
y ∈ Z and diff z = diff x + 1.

The proof is in the book.
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Proving that Enough is Generated

First we study techniques for showing that everything we want a
grammar to generate is really generated.

Since X ,Y ,Z ⊆ {0, 1}∗, to prove that X ⊆ ΠG ,A, Y ⊆ ΠG ,B and
Z ⊆ ΠG ,C, it will suffice to use strong string induction to show
that, for all w ∈ {0, 1}∗:

(A) if w ∈ X , then w ∈ ΠG ,A;

(B) if w ∈ Y , then w ∈ ΠG ,B; and

(C) if w ∈ Z , then w ∈ ΠG ,C.
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Enough is Generated in Example

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and
assume the inductive hypothesis: for all x ∈ {0, 1}∗, if x is a
proper substring of w , then:

(A) if x ∈ X , then x ∈ ΠA;

(B) if x ∈ Y , then x ∈ ΠB; and

(C) if x ∈ Z , then x ∈ ΠC.

We must prove that:

(A) if w ∈ X , then w ∈ ΠA;

(B) if w ∈ Y , then w ∈ ΠB; and

(C) if w ∈ Z , then w ∈ ΠC.
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Enough is Generated in Example

(A) Suppose w ∈ X . We must show that w ∈ ΠA. There are
three cases to consider.

• Suppose w = %. Because A→% ∈ P , we have that
w = % ∈ ΠA.
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three cases to consider.

• Suppose w = %. Because A→% ∈ P , we have that
w = % ∈ ΠA.

• Suppose w = 0x , for some x ∈ {0, 1}∗. Because
−1 + diff x = diff w = 0, we have that diff x = 1. Thus, by
Lemma 4.5.2(1), we have that x = yz , for some y , z ∈ {0, 1}∗

such that y ∈ Y and diff z = diff x − 1 = 1− 1 = 0. Thus
w = 0yz , y ∈ Y and z ∈ X . We have 0 ∈ Π0. Because y ∈ Y
and z ∈ X
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and z ∈ X are proper substrings of w , parts (B) and (A) of the
inductive hypothesis tell us that y ∈ ΠB and z ∈ ΠA. Thus,
because A→ 0BA ∈ P , it follows that that w = 0yz ∈ ΠA.

• Suppose w = 1x , for some x ∈ {0, 1}∗. The proof is analogous
to the preceding case.
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Enough is Generated in Example

(B) Suppose w ∈ Y . We must show that w ∈ ΠB. Because
diff w = 1, there are two cases to consider.

• Suppose w = 1x , for some x ∈ {0, 1}∗.
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(B) Suppose w ∈ Y . We must show that w ∈ ΠB. Because
diff w = 1, there are two cases to consider.

• Suppose w = 1x , for some x ∈ {0, 1}∗. Because all proper
prefixes of w have diffs ≤ 0, we have that x = %, so that
w = 1. Since B→ 1 ∈ P , we have that w = 1 ∈ ΠB.
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• Suppose w = 0x , for some x ∈ {0, 1}∗. Thus diff x = 2.
Because diff x ≥ 1, by Lemma 4.5.2(1), we have that x = yz ,
for some y , z ∈ {0, 1}∗ such that y ∈ Y and
diff z = diff x − 1 = 2− 1 = 1. Hence w = 0yz .
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proof that z ∈ Y , suppose v is a proper prefix of z . Thus 0yv
is a proper prefix of w . Since w ∈ Y , it follows that
diff v = diff(0yv) ≤ 0, as required. Since y , z ∈ Y , part (B)
of the inductive hypothesis tell us that y , z ∈ ΠB. Thus,
because B→ 0BB ∈ P we have that w = 0yz ∈ ΠB.
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proof that z ∈ Y , suppose v is a proper prefix of z . Thus 0yv
is a proper prefix of w . Since w ∈ Y , it follows that
diff v = diff(0yv) ≤ 0, as required. Since y , z ∈ Y , part (B)
of the inductive hypothesis tell us that y , z ∈ ΠB. Thus,
because B→ 0BB ∈ P we have that w = 0yz ∈ ΠB.

(C) Suppose w ∈ Z . We must show that w ∈ ΠC. The proof is
analogous to the proof of part (B).
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A Problem with Unit Productions

Suppose H is the grammar

A→ B | 0A3, B→% | 1B2,

and let

X = { 0n1m2m3n | n,m ∈ N } and Y = { 1m2m | m ∈ N }.
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X = { 0n1m2m3n | n,m ∈ N } and Y = { 1m2m | m ∈ N }.

We can prove that X ⊆ ΠH,A = L(H) and Y ⊆ ΠH,B using the
above technique, but the production A→ B, which is called a unit
production because its right side is a single variable, makes
part (A) tricky. If w = 001m2m30 = 1m2m ∈ Y , we would like to
use part (B) of the inductive hypothesis to conclude w ∈ ΠB, and
then use the fact that A→ B ∈ P to conclude that w ∈ ΠA.
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above technique, but the production A→ B, which is called a unit
production because its right side is a single variable, makes
part (A) tricky. If w = 001m2m30 = 1m2m ∈ Y , we would like to
use part (B) of the inductive hypothesis to conclude w ∈ ΠB, and
then use the fact that A→ B ∈ P to conclude that w ∈ ΠA. But
w is not a proper substring of itself, and so the inductive
hypothesis in not applicable. Instead, we must split into cases
m = 0 and m ≥ 1, using A→ B and B→%, in the first case, and
A→ B and B→ 1B2, as well as the inductive hypothesis on
1m−12m−1 ∈ Y , in the second case.
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A Problem with Unit Productions

Because there are no productions from B back to A, we could also
first use strong string induction to prove that, for all w ∈ {0, 1}∗,

(B) if w ∈ Y , then w ∈ ΠB,

and then use the result of this induction along with strong string
induction to prove that for all w ∈ {0, 1}∗,

(A) if w ∈ X , then w ∈ ΠA.

This works whenever two parts of a grammar are not mutually
recursive.
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(B) if w ∈ Y , then w ∈ ΠB,

and then use the result of this induction along with strong string
induction to prove that for all w ∈ {0, 1}∗,

(A) if w ∈ X , then w ∈ ΠA.

This works whenever two parts of a grammar are not mutually
recursive.

With this grammar, we could also first use mathematical induction
to prove that, for all m ∈ N, 1m2m ∈ ΠB, and then use the result
of this induction to prove, by mathematical induction on n, that
for all n,m ∈ N, 0n1m2m3n ∈ ΠA.
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A Problem with %-Productions

Note that %-productions, i.e., productions of the form q →%, can
cause similar problems to those caused by unit productions. E.g., if
we have the productions

A→ BC and B→%,

then A→ BC behaves like a unit production.
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Proving that Everything Generated is Wanted

To prove that everything generated by a grammar is wanted, we
introduce a new induction principle that we call induction on Π.
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Principle of Induction on Π

Theorem 4.5.3 (Principle of Induction on Π)
Suppose G is a grammar, Pq(w) is a property of a string w ∈ ΠG ,q,
for all q ∈ QG , and Pa(w), for a ∈ alphabetG, says “w = a”.

If

(1) for all q ∈ QG , if q →% ∈ PG , then Pq(%), and

(2) for all q ∈ QG , n ∈ N− {0}, a1, . . . , an ∈ QG ∪ alphabetG,
and w1 ∈ ΠG ,a1, . . . , wn ∈ ΠG ,an , if q → a1 · · · an ∈ PG and
(†) then Pq(w1 · · ·wn),

then

for all q ∈ QG , for all w ∈ ΠG ,q, Pq(w).

We refer to (†) as the inductive hypothesis.
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Principle of Induction on Π

Proof. It suffices to show that, for all pt ∈ PT, for all q ∈ QG

and w ∈ (alphabetG )∗, if pt is valid for G , rootLabel pt = q and
yield pt = w , then Pq(w). We prove this using the principle of
induction on parse trees. ✷
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Proof. It suffices to show that, for all pt ∈ PT, for all q ∈ QG

and w ∈ (alphabetG )∗, if pt is valid for G , rootLabel pt = q and
yield pt = w , then Pq(w). We prove this using the principle of
induction on parse trees. ✷

When proving part (2), we can make use of the fact that, for
ai ∈ alphabetG , Πai = {ai}, so that wi ∈ Πai will be ai . Hence it
will be unnecessary to assume that Pai (ai), since this says
“ai = ai”, and so is always true.
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Using Induction on Π in Example

Consider, again, our main example grammar G :

A→% | 0BA | 1CA,

B→ 1 | 0BB,

C→ 0 | 1CC.

Let

X = {w ∈ {0, 1}∗ | diff w = 0 },

Y = {w ∈ {0, 1}∗ | diff w = 1 and,

for all proper prefixes v of w ,diff v ≤ 0 }, and

Z = {w ∈ {0, 1}∗ | diff w = −1 and,

for all proper prefixes v of w ,diff v ≥ 0 }.
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Using Induction on Π in Example

We have already proven that X ⊆ ΠA = L(G ), Y ⊆ ΠB and
Z ⊆ ΠC. To complete the proof that L(G ) = ΠA = X , ΠB = Y
and ΠC = Z , we will use induction on Π to prove that ΠA ⊆ X ,
ΠB ⊆ Y and ΠC ⊆ Z .

We use induction on Π to show that:

(A) for all w ∈ ΠA, w ∈ X ;

(B) for all w ∈ ΠB, w ∈ Y ; and

(C) for all w ∈ ΠC, w ∈ Z .

Formally, this means that we let the properties PA(w), PB(w) and
PC(w) be “w ∈ X”, “w ∈ Y ” and “w ∈ Z”, respectively, and
then use the induction principle to prove that, for all q ∈ QG , for
all w ∈ Πq, Pq(w). But we will actually work more informally.
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Using Induction on Π in Example

There are seven productions to consider.

• (A→%) We must show that % ∈ X (as “w ∈ X” is the
property of part (A)). And this holds since diff % = 0.
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There are seven productions to consider.

• (A→%) We must show that % ∈ X (as “w ∈ X” is the
property of part (A)). And this holds since diff % = 0.

• (A→ 0BA) Suppose w1 ∈ ΠB and w2 ∈ ΠA (as 0BA is the
right-side of the production, and 0 is in G ’s alphabet), and
assume the inductive hypothesis, w1 ∈ Y (as this is the
property of part (B)) and w2 ∈ X (as this is the property of
part (A)). We must show that 0w1w2 ∈ X , as the production
shows that 0w1w2 ∈ ΠA. Because w1 ∈ Y and w2 ∈ X , we
have that diff w1 = 1 and diff w2 = 0. Thus
diff(0w1w2) = −1 + 1 + 0 = 0, showing that 0w1w2 ∈ X .
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Using Induction on Π in Example

• (B→ 0BB) Suppose w1,w2 ∈ ΠB, and assume the inductive
hypothesis, w1,w2 ∈ Y . Thus w1 and w2 are nonempty. We
must show that 0w1w2 ∈ Y . Clearly,
diff(0w1w2) = −1 + 1 + 1 = 1. So, suppose v is a proper
prefix of 0w1w2. We must show that diff v ≤ 0.
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diff(0w1w2) = −1 + 1 + 1 = 1. So, suppose v is a proper
prefix of 0w1w2. We must show that diff v ≤ 0. There are
three cases to consider.

• Suppose v = %. Then diff v = 0 ≤ 0.
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• (B→ 0BB) Suppose w1,w2 ∈ ΠB, and assume the inductive
hypothesis, w1,w2 ∈ Y . Thus w1 and w2 are nonempty. We
must show that 0w1w2 ∈ Y . Clearly,
diff(0w1w2) = −1 + 1 + 1 = 1. So, suppose v is a proper
prefix of 0w1w2. We must show that diff v ≤ 0. There are
three cases to consider.

• Suppose v = %. Then diff v = 0 ≤ 0.
• Suppose v = 0u, for a proper prefix u of w1. Because w1 ∈ Y ,

we have that diff u ≤ 0. Thus
diff v = −1 + diff u ≤ −1 + 0 ≤ 0.
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hypothesis, w1,w2 ∈ Y . Thus w1 and w2 are nonempty. We
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• Suppose v = %. Then diff v = 0 ≤ 0.
• Suppose v = 0u, for a proper prefix u of w1. Because w1 ∈ Y ,

we have that diff u ≤ 0. Thus
diff v = −1 + diff u ≤ −1 + 0 ≤ 0.

• Suppose v = 0w1u, for a proper prefix u of w2. Because
w2 ∈ Y , we have that diff u ≤ 0. Thus
diff v = −1 + 1 + diff u = diff u ≤ 0.

20 / 20



Using Induction on Π in Example

• (B→ 0BB) Suppose w1,w2 ∈ ΠB, and assume the inductive
hypothesis, w1,w2 ∈ Y . Thus w1 and w2 are nonempty. We
must show that 0w1w2 ∈ Y . Clearly,
diff(0w1w2) = −1 + 1 + 1 = 1. So, suppose v is a proper
prefix of 0w1w2. We must show that diff v ≤ 0. There are
three cases to consider.

• Suppose v = %. Then diff v = 0 ≤ 0.
• Suppose v = 0u, for a proper prefix u of w1. Because w1 ∈ Y ,

we have that diff u ≤ 0. Thus
diff v = −1 + diff u ≤ −1 + 0 ≤ 0.

• Suppose v = 0w1u, for a proper prefix u of w2. Because
w2 ∈ Y , we have that diff u ≤ 0. Thus
diff v = −1 + 1 + diff u = diff u ≤ 0.

• The remaining productions are handled similarly.
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