4.5: Proving the Correctness of Grammars

In this section, we consider techniques for proving the correctness of grammars, i.e., for proving that grammars generate the languages we want them to.

Suppose *G* is a grammar and $a \in Q_G \cup \text{alphabet } G$. Then $\prod_{G,a} = \{ w \in (\text{alphabet } G)^* \mid w \text{ is parsable from } a \text{ using } G \}$. If it's clear which grammar we are talking about, we often abbreviate $\prod_{G,a}$ to \prod_a .

Clearly, $\Pi_{G,s_G} =$

Suppose *G* is a grammar and $a \in Q_G \cup \text{alphabet } G$. Then $\Pi_{G,a} = \{ w \in (\text{alphabet } G)^* \mid w \text{ is parsable from } a \text{ using } G \}.$ If it's clear which grammar we are talking about, we often abbreviate $\Pi_{G,a}$ to Π_a .

Clearly, $\Pi_{G,s_G} = L(G)$.

Suppose *G* is a grammar and $a \in Q_G \cup \text{alphabet } G$. Then $\Pi_{G,a} = \{ w \in (\text{alphabet } G)^* \mid w \text{ is parsable from } a \text{ using } G \}$. If it's clear which grammar we are talking about, we often abbreviate $\Pi_{G,a}$ to Π_a .

Clearly, $\Pi_{G,s_G} = L(G)$.

For example, if G is the grammar

 $\mathsf{A} \to \% \mid \mathsf{0A1}$

then $\Pi_0 =$

Suppose *G* is a grammar and $a \in Q_G \cup \text{alphabet } G$. Then $\Pi_{G,a} = \{ w \in (\text{alphabet } G)^* \mid w \text{ is parsable from } a \text{ using } G \}$. If it's clear which grammar we are talking about, we often abbreviate $\Pi_{G,a}$ to Π_a .

Clearly, $\Pi_{G,s_G} = L(G)$.

For example, if G is the grammar

 $\mathsf{A} \to \% \mid \mathsf{0A1}$

then $\Pi_0 = \{0\}$

Suppose *G* is a grammar and $a \in Q_G \cup \text{alphabet } G$. Then $\Pi_{G,a} = \{ w \in (\text{alphabet } G)^* \mid w \text{ is parsable from } a \text{ using } G \}$. If it's clear which grammar we are talking about, we often abbreviate $\Pi_{G,a}$ to Π_a .

Clearly, $\Pi_{G,s_G} = L(G)$.

For example, if G is the grammar

 $\mathsf{A} \to \% \mid \mathsf{0A1}$

then $\Pi_0=\{0\},\ \Pi_1=\{1\}$ and $\Pi_A=$

Suppose *G* is a grammar and $a \in Q_G \cup \text{alphabet } G$. Then $\Pi_{G,a} = \{ w \in (\text{alphabet } G)^* \mid w \text{ is parsable from } a \text{ using } G \}$. If it's clear which grammar we are talking about, we often abbreviate $\Pi_{G,a}$ to Π_a .

Clearly, $\Pi_{G,s_G} = L(G)$.

For example, if G is the grammar

 $A \rightarrow \% \mid 0A1$

then $\Pi_0 = \{0\}$, $\Pi_1 = \{1\}$ and $\Pi_A = \{0^n 1^n \mid n \in \mathbb{N}\} =$

Suppose *G* is a grammar and $a \in Q_G \cup \text{alphabet } G$. Then $\Pi_{G,a} = \{ w \in (\text{alphabet } G)^* \mid w \text{ is parsable from } a \text{ using } G \}$. If it's clear which grammar we are talking about, we often abbreviate $\Pi_{G,a}$ to Π_a .

Clearly, $\Pi_{G,s_G} = L(G)$.

For example, if G is the grammar

 $\mathsf{A} \to \% \mid \mathsf{0A1}$

then $\Pi_0 = \{0\}$, $\Pi_1 = \{1\}$ and $\Pi_A = \{0^n 1^n \mid n \in \mathbb{N}\} = L(G)$.

Proposition 4.5.1 Suppose G is a grammar. (1) For all $a \in alphabet G$, $\Pi_{G,a} =$ (2) For all $q \in Q_G$, if $q \to \% \in P_G$, then $\in \Pi_{G,q}$. (3) For all $q \in Q_G$, $n \in \mathbb{N} - \{0\}$, $a_1, \dots, a_n \in Sym$ and $w_1, \dots, w_n \in Str$, if $q \to a_1 \cdots a_n \in P_G$ and $w_1 \in \Pi_{G,a_1}, \dots, w_n \in \Pi_{G,a_n}$, then $\in \Pi_{G,q}$.

Proposition 4.5.1 Suppose G is a grammar. (1) For all $a \in alphabet G$, $\Pi_{G,a} = \{a\}$. (2) For all $q \in Q_G$, if $q \to \% \in P_G$, then $\in \Pi_{G,q}$. (3) For all $q \in Q_G$, $n \in \mathbb{N} - \{0\}$, $a_1, \ldots, a_n \in Sym$ and $w_1, \ldots, w_n \in Str$, if $q \to a_1 \cdots a_n \in P_G$ and $w_1 \in \Pi_{G,a_1}, \ldots, w_n \in \Pi_{G,a_n}$, then $\in \Pi_{G,q}$.

Proposition 4.5.1 Suppose G is a grammar. (1) For all $a \in alphabet G$, $\Pi_{G,a} = \{a\}$. (2) For all $q \in Q_G$, if $q \to \% \in P_G$, then $\% \in \Pi_{G,q}$. (3) For all $q \in Q_G$, $n \in \mathbb{N} - \{0\}$, $a_1, \ldots, a_n \in Sym$ and $w_1, \ldots, w_n \in Str$, if $q \to a_1 \cdots a_n \in P_G$ and $w_1 \in \Pi_{G,a_1}, \ldots, w_n \in \Pi_{G,a_n}$, then $\in \Pi_{G,q}$.

Proposition 4.5.1 Suppose G is a grammar. (1) For all $a \in \text{alphabet } G, \Pi_{G,a} = \{a\}$. (2) For all $q \in Q_G$, if $q \to \% \in P_G$, then $\% \in \Pi_{G,q}$. (3) For all $q \in Q_G$, $n \in \mathbb{N} - \{0\}$, $a_1, \ldots, a_n \in \text{Sym and}$ $w_1, \ldots, w_n \in \text{Str}$, if $q \to a_1 \cdots a_n \in P_G$ and $w_1 \in \Pi_{G,a_1}, \ldots, w_n \in \Pi_{G,a_n}$, then $w_1 \cdots w_n \in \Pi_{G,q}$.

Define diff $\in \{0,1\}^* \to \mathbb{Z}$ by: for all $w \in \{0,1\}^*$,

diff w = the number of 1's in w – the number of 0's in w.

Then:

- diff % = 0;
- diff 1 = 1;
- **diff** 0 = -1; and
- for all $x, y \in \{0, 1\}^*$, diff(xy) = diff x + diff y.

Our main example will be the grammar G:

$$\begin{split} \mathsf{A} &\rightarrow \% \mid \mathsf{0BA} \mid \mathsf{1CA}, \\ \mathsf{B} &\rightarrow \mathsf{1} \mid \mathsf{0BB}, \\ \mathsf{C} &\rightarrow \mathsf{0} \mid \mathsf{1CC}. \end{split}$$

Let

 $X = \{ w \in \{0,1\}^* \mid \text{diff } w = 0 \},$ $Y = \{ w \in \{0,1\}^* \mid \text{diff } w = 1 \text{ and,}$

 $Z = \{ w \in \{0,1\}^* \mid \text{diff } w = -1 \text{ and}, \}$

We will prove that $L(G) = \prod_{G,A} = X$, $\prod_{G,B} = Y$ and $\prod_{G,C} = Z$.

Our main example will be the grammar G:

$$\begin{split} \mathsf{A} &\rightarrow \% \mid \mathsf{0BA} \mid \mathsf{1CA}, \\ \mathsf{B} &\rightarrow \mathsf{1} \mid \mathsf{0BB}, \\ \mathsf{C} &\rightarrow \mathsf{0} \mid \mathsf{1CC}. \end{split}$$

Let

 $X = \{ w \in \{0,1\}^* \mid \text{diff } w = 0 \},$ $Y = \{ w \in \{0,1\}^* \mid \text{diff } w = 1 \text{ and},$ for all proper prefixes v of w, diff v \le 0 \}, $Z = \{ w \in \{0,1\}^* \mid \text{diff } w = -1 \text{ and},$ for all proper prefixes v of w, diff v \ge 0 \}.

We will prove that $L(G) = \prod_{G,A} = X$, $\prod_{G,B} = Y$ and $\prod_{G,C} = Z$.

Lemma 4.5.2 Suppose $x \in \{0,1\}^*$. (1) If diff $x \ge 1$, then x = yz for some $y, z \in \{0,1\}^*$ such that $y \in Y$ and diff z = diff x - 1. (2) If diff $x \le -1$, then x = yz for some $y, z \in \{0,1\}^*$ such that $y \in Z$ and diff z = diff x + 1.

The proof is in the book.

Proving that Enough is Generated

First we study techniques for showing that everything we want a grammar to generate is really generated.

Since $X, Y, Z \subseteq \{0,1\}^*$, to prove that $X \subseteq \prod_{G,A}$, $Y \subseteq \prod_{G,B}$ and $Z \subseteq \prod_{G,C}$, it will suffice to use strong string induction to show that, for all $w \in \{0,1\}^*$:

(A) if $w \in X$, then $w \in \Pi_{G,A}$; (B) if $w \in Y$, then $w \in \Pi_{G,B}$; and (C) if $w \in Z$, then $w \in \Pi_{G,C}$.

We proceed by strong string induction. Suppose $w \in \{0,1\}^*$, and assume the inductive hypothesis: for all $x \in \{0,1\}^*$, if x is a proper substring of w, then:

(A) if $x \in X$, then $x \in \Pi_A$;

(B) if $x \in Y$, then $x \in \Pi_B$; and

(C) if $x \in Z$, then $x \in \Pi_{C}$.

We must prove that:

(A) if $w \in X$, then $w \in \Pi_A$; (B) if $w \in Y$, then $w \in \Pi_B$; and (C) if $w \in Z$, then $w \in \Pi_C$.

(A) Suppose $w \in X$. We must show that $w \in \Pi_A$. There are three cases to consider.

• Suppose w = %. Because $A \to \% \in P$, we have that $w = \% \in \Pi_A$.

(A) Suppose $w \in X$. We must show that $w \in \Pi_A$. There are three cases to consider.

- Suppose w = %. Because $A \to \% \in P$, we have that $w = \% \in \Pi_A$.
- Suppose w = 0x, for some $x \in \{0,1\}^*$. Because $-1 + \operatorname{diff} x = \operatorname{diff} w = 0$, we have that $\operatorname{diff} x = 1$. Thus, by Lemma 4.5.2(1), we have that x = yz, for some $y, z \in \{0,1\}^*$ such that $y \in Y$ and $\operatorname{diff} z = \operatorname{diff} x - 1 = 1 - 1 = 0$. Thus w = 0yz, $y \in Y$ and $z \in X$. We have $0 \in \Pi_0$. Because $y \in Y$ and $z \in X$

(A) Suppose $w \in X$. We must show that $w \in \Pi_A$. There are three cases to consider.

- Suppose w = %. Because $A \to \% \in P$, we have that $w = \% \in \Pi_A$.
- Suppose w = 0x, for some x ∈ {0,1}*. Because -1 + diff x = diff w = 0, we have that diff x = 1. Thus, by Lemma 4.5.2(1), we have that x = yz, for some y, z ∈ {0,1}* such that y ∈ Y and diff z = diff x - 1 = 1 - 1 = 0. Thus w = 0yz, y ∈ Y and z ∈ X. We have 0 ∈ Π₀. Because y ∈ Y and z ∈ X are proper substrings of w, parts (B) and (A) of the inductive hypothesis tell us that y ∈ Π_B and z ∈ Π_A. Thus, because A → 0BA ∈ P, it follows that that w = 0yz ∈ Π_A.

(A) Suppose $w \in X$. We must show that $w \in \Pi_A$. There are three cases to consider.

- Suppose w = %. Because $A \to \% \in P$, we have that $w = \% \in \Pi_A$.
- Suppose w = 0x, for some x ∈ {0,1}*. Because -1 + diff x = diff w = 0, we have that diff x = 1. Thus, by Lemma 4.5.2(1), we have that x = yz, for some y, z ∈ {0,1}* such that y ∈ Y and diff z = diff x - 1 = 1 - 1 = 0. Thus w = 0yz, y ∈ Y and z ∈ X. We have 0 ∈ Π₀. Because y ∈ Y and z ∈ X are proper substrings of w, parts (B) and (A) of the inductive hypothesis tell us that y ∈ Π_B and z ∈ Π_A. Thus, because A → 0BA ∈ P, it follows that that w = 0yz ∈ Π_A.
- Suppose w = 1x, for some x ∈ {0,1}*. The proof is analogous to the preceding case.

- (B) Suppose $w \in Y$. We must show that $w \in \Pi_B$. Because diff w = 1, there are two cases to consider.
 - Suppose w = 1x, for some $x \in \{0, 1\}^*$.

- (B) Suppose $w \in Y$. We must show that $w \in \Pi_B$. Because diff w = 1, there are two cases to consider.
 - Suppose w = 1x, for some x ∈ {0,1}*. Because all proper prefixes of w have diffs ≤ 0, we have that

- (B) Suppose $w \in Y$. We must show that $w \in \Pi_B$. Because diff w = 1, there are two cases to consider.
 - Suppose w = 1x, for some x ∈ {0,1}*. Because all proper prefixes of w have diffs ≤ 0, we have that x = %, so that w = 1. Since B → 1 ∈ P, we have that w = 1 ∈ Π_B.

- (B) Suppose $w \in Y$. We must show that $w \in \Pi_B$. Because diff w = 1, there are two cases to consider.
 - Suppose w = 1x, for some x ∈ {0,1}*. Because all proper prefixes of w have diffs ≤ 0, we have that x = %, so that w = 1. Since B → 1 ∈ P, we have that w = 1 ∈ Π_B.
 - Suppose w = 0x, for some $x \in \{0, 1\}^*$. Thus diff x = 2. Because diff $x \ge 1$, by Lemma 4.5.2(1), we have that x = yz, for some $y, z \in \{0, 1\}^*$ such that $y \in Y$ and diff z = diff x - 1 = 2 - 1 = 1. Hence w = 0yz.

- (B) Suppose $w \in Y$. We must show that $w \in \Pi_B$. Because diff w = 1, there are two cases to consider.
 - Suppose w = 1x, for some x ∈ {0,1}*. Because all proper prefixes of w have diffs ≤ 0, we have that x = %, so that w = 1. Since B → 1 ∈ P, we have that w = 1 ∈ Π_B.
 - Suppose w = 0x, for some $x \in \{0,1\}^*$. Thus diff x = 2. Because diff $x \ge 1$, by Lemma 4.5.2(1), we have that x = yz, for some $y, z \in \{0,1\}^*$ such that $y \in Y$ and diff z = diff x - 1 = 2 - 1 = 1. Hence w = 0yz. To finish the proof that $z \in Y$, suppose v is a proper prefix of z. Thus 0yv is a proper prefix of w. Since $w \in Y$, it follows that diff $v = \text{diff}(0yv) \le 0$, as required. Since $y, z \in Y$, part (B) of the inductive hypothesis tell us that $y, z \in \Pi_B$. Thus, because $B \to 0BB \in P$ we have that $w = 0yz \in \Pi_B$.

- (B) Suppose $w \in Y$. We must show that $w \in \Pi_B$. Because diff w = 1, there are two cases to consider.
 - Suppose w = 1x, for some x ∈ {0,1}*. Because all proper prefixes of w have diffs ≤ 0, we have that x = %, so that w = 1. Since B → 1 ∈ P, we have that w = 1 ∈ Π_B.
 - Suppose w = 0x, for some $x \in \{0,1\}^*$. Thus diff x = 2. Because diff $x \ge 1$, by Lemma 4.5.2(1), we have that x = yz, for some $y, z \in \{0,1\}^*$ such that $y \in Y$ and diff z = diff x - 1 = 2 - 1 = 1. Hence w = 0yz. To finish the proof that $z \in Y$, suppose v is a proper prefix of z. Thus 0yv is a proper prefix of w. Since $w \in Y$, it follows that diff $v = \text{diff}(0yv) \le 0$, as required. Since $y, z \in Y$, part (B) of the inductive hypothesis tell us that $y, z \in \Pi_B$. Thus, because $B \to 0BB \in P$ we have that $w = 0yz \in \Pi_B$.

(C) Suppose $w \in Z$. We must show that $w \in \Pi_C$. The proof is analogous to the proof of part (B).

Suppose H is the grammar

 $\mathsf{A} \to \mathsf{B} \mid \mathsf{0A3}, \qquad \mathsf{B} \to \% \mid \mathsf{1B2},$

and let

 $X = \{ 0^{n} 1^{m} 2^{m} 3^{n} \mid n, m \in \mathbb{N} \} \text{ and } Y = \{ 1^{m} 2^{m} \mid m \in \mathbb{N} \}.$

Suppose H is the grammar

 $A \rightarrow B \mid 0A3$, $B \rightarrow \% \mid 1B2$,

and let

 $X = \{ 0^{n}1^{m}2^{m}3^{n} \mid n, m \in \mathbb{N} \} \text{ and } Y = \{ 1^{m}2^{m} \mid m \in \mathbb{N} \}.$ We can prove that $X \subseteq \Pi_{H,A} = L(H)$ and $Y \subseteq \Pi_{H,B}$ using the above technique, but the production $A \to B$, which is called a *unit* production because its right side is a single variable, makes part (A) tricky. If $w = 0^{0}1^{m}2^{m}3^{0} = 1^{m}2^{m} \in Y$, we would like to use part (B) of the inductive hypothesis to conclude $w \in \Pi_{B}$, and then use the fact that $A \to B \in P$ to conclude that $w \in \Pi_{A}$.

Suppose H is the grammar

 $A \rightarrow B \mid 0A3$, $B \rightarrow \% \mid 1B2$,

and let

 $X = \{ 0^{n} 1^{m} 2^{m} 3^{n} \mid n, m \in \mathbb{N} \} \text{ and } Y = \{ 1^{m} 2^{m} \mid m \in \mathbb{N} \}.$ We can prove that $X \subseteq \prod_{H,A} = L(H)$ and $Y \subseteq \prod_{H,B}$ using the above technique, but the production $A \rightarrow B$, which is called a *unit* production because its right side is a single variable, makes part (A) tricky. If $w = 0^0 1^m 2^m 3^0 = 1^m 2^m \in Y$, we would like to use part (B) of the inductive hypothesis to conclude $w \in \Pi_{B}$, and then use the fact that $A \to B \in P$ to conclude that $w \in \Pi_A$. But w is not a proper substring of itself, and so the inductive hypothesis in not applicable. Instead, we must split into cases m = 0 and $m \ge 1$, using A \rightarrow B and B \rightarrow %, in the first case, and $A \rightarrow B$ and $B \rightarrow 1B2$, as well as the inductive hypothesis on $1^{m-1}2^{m-1} \in Y$, in the second case.

4 69 1

11/20

Because there are no productions from B back to A, we could also first use strong string induction to prove that, for all $w \in \{0, 1\}^*$, (B) if $w \in Y$, then $w \in \Pi_B$,

and then use the result of this induction along with strong string induction to prove that for all $w \in \{0,1\}^*$,

(A) if $w \in X$, then $w \in \Pi_A$.

This works whenever two parts of a grammar are not mutually recursive.

Because there are no productions from B back to A, we could also first use strong string induction to prove that, for all $w \in \{0, 1\}^*$, (B) if $w \in Y$, then $w \in \Pi_B$,

and then use the result of this induction along with strong string induction to prove that for all $w \in \{0,1\}^*$,

(A) if $w \in X$, then $w \in \Pi_A$.

This works whenever two parts of a grammar are not mutually recursive.

With this grammar, we could also first use mathematical induction to prove that, for all $m \in \mathbb{N}$, $1^m 2^m \in \Pi_B$, and then use the result of this induction to prove, by mathematical induction on *n*, that for all $n, m \in \mathbb{N}$, $0^n 1^m 2^m 3^n \in \Pi_A$.

A Problem with %-Productions

Note that %-productions, i.e., productions of the form $q \rightarrow \%$, can cause similar problems to those caused by unit productions. E.g., if we have the productions

$$A \rightarrow BC$$
 and $B \rightarrow \%$,

then $A \rightarrow BC$ behaves like a unit production.

Proving that Everything Generated is Wanted

To prove that everything generated by a grammar is wanted, we introduce a new induction principle that we call induction on Π .

Theorem 4.5.3 (Principle of Induction on Π) Suppose *G* is a grammar, $P_q(w)$ is a property of a string $w \in \prod_{G,q}$, for all $q \in Q_G$, and $P_a(w)$, for $a \in \text{alphabet } G$, says "w = a". If

- (1) for all $q \in Q_G$, if $q \to \% \in P_G$, then $P_q(\%)$, and
- (2) for all $q \in Q_G$, $n \in \mathbb{N} \{0\}$, $a_1, \ldots, a_n \in Q_G \cup \text{alphabet } G$, and $w_1 \in \prod_{G,a_1}, \ldots, w_n \in \prod_{G,a_n}$, if $q \to a_1 \cdots a_n \in P_G$ and (†) then $P_q(w_1 \cdots w_n)$,

then

for all
$$q \in Q_G$$
, for all $w \in \prod_{G,q}, P_q(w)$.

We refer to (†) as the inductive hypothesis.

Theorem 4.5.3 (Principle of Induction on Π) Suppose *G* is a grammar, $P_q(w)$ is a property of a string $w \in \prod_{G,q}$, for all $q \in Q_G$, and $P_a(w)$, for $a \in \text{alphabet } G$, says "w = a". If

- (1) for all $q \in Q_G$, if $q \to \% \in P_G$, then $P_q(\%)$, and
- (2) for all $q \in Q_G$, $n \in \mathbb{N} \{0\}$, $a_1, \ldots, a_n \in Q_G \cup \text{alphabet } G$, and $w_1 \in \prod_{G,a_1}, \ldots, w_n \in \prod_{G,a_n}$, if $q \to a_1 \cdots a_n \in P_G$ and (†) $P_{a_1}(w_1), \ldots, P_{a_n}(w_n)$, then $P_q(w_1 \cdots w_n)$,

then

for all
$$q \in Q_G$$
, for all $w \in \prod_{G,q}, P_q(w)$.

We refer to (†) as the inductive hypothesis.

Proof. It suffices to show that, for all $pt \in PT$, for all $q \in Q_G$ and $w \in (alphabet G)^*$, if pt is valid for G, **rootLabel** pt = q and **yield** pt = w, then $P_q(w)$. We prove this using the principle of induction on parse trees. \Box

Proof. It suffices to show that, for all $pt \in PT$, for all $q \in Q_G$ and $w \in (alphabet G)^*$, if pt is valid for G, **rootLabel** pt = q and **yield** pt = w, then $P_q(w)$. We prove this using the principle of induction on parse trees. \Box

When proving part (2), we can make use of the fact that, for $a_i \in \text{alphabet } G$, $\prod_{a_i} = \{a_i\}$, so that $w_i \in \prod_{a_i}$ will be a_i . Hence it will be unnecessary to assume that $P_{a_i}(a_i)$, since this says " $a_i = a_i$ ", and so is always true.

Consider, again, our main example grammar G:

$$\begin{split} A &\rightarrow \% \mid 0 \text{BA} \mid 1 \text{CA}, \\ B &\rightarrow 1 \mid 0 \text{BB}, \\ C &\rightarrow 0 \mid 1 \text{CC}. \end{split}$$

Let

 $X = \{ w \in \{0,1\}^* \mid \text{diff } w = 0 \},$ $Y = \{ w \in \{0,1\}^* \mid \text{diff } w = 1 \text{ and,}$ for all proper prefixes v of w, diff $v \le 0 \},$ and $Z = \{ w \in \{0,1\}^* \mid \text{diff } w = -1 \text{ and,}$ for all proper prefixes v of w, diff $v \ge 0 \}.$

We have already proven that $X \subseteq \Pi_A = L(G)$, $Y \subseteq \Pi_B$ and $Z \subseteq \Pi_C$. To complete the proof that $L(G) = \Pi_A = X$, $\Pi_B = Y$ and $\Pi_C = Z$, we will use induction on Π to prove that $\Pi_A \subseteq X$, $\Pi_B \subseteq Y$ and $\Pi_C \subseteq Z$.

We use induction on Π to show that:

(A) for all $w \in \Pi_A$, $w \in X$;

(B) for all $w \in \Pi_B$, $w \in Y$; and

(C) for all $w \in \Pi_{\mathsf{C}}, w \in \mathsf{Z}$.

Formally, this means that we let the properties $P_A(w)$, $P_B(w)$ and $P_C(w)$ be " $w \in X$ ", " $w \in Y$ " and " $w \in Z$ ", respectively, and then use the induction principle to prove that, for all $q \in Q_G$, for all $w \in \Pi_q$, $P_q(w)$. But we will actually work more informally.

There are seven productions to consider.

(A→%) We must show that % ∈ X (as "w ∈ X" is the property of part (A)). And this holds since diff % = 0.

There are seven productions to consider.

- (A → %) We must show that % ∈ X (as "w ∈ X" is the property of part (A)). And this holds since diff % = 0.
- (A→0BA) Suppose w₁ ∈ Π_B and w₂ ∈ Π_A (as 0BA is the right-side of the production, and 0 is in G's alphabet), and assume the inductive hypothesis, w₁ ∈ Y (as this is the property of part (B)) and w₂ ∈ X (as this is the property of part (A)). We must show that 0w₁w₂ ∈ X, as the production shows that 0w₁w₂ ∈ Π_A. Because w₁ ∈ Y and w₂ ∈ X, we have that diff w₁ = 1 and diff w₂ = 0. Thus diff(0w₁w₂) = -1 + 1 + 0 = 0, showing that 0w₁w₂ ∈ X.

• (B \rightarrow 0BB) Suppose $w_1, w_2 \in \Pi_B$, and assume the inductive hypothesis, $w_1, w_2 \in Y$. Thus w_1 and w_2 are nonempty. We must show that $0w_1w_2 \in Y$. Clearly, diff $(0w_1w_2) = -1 + 1 + 1 = 1$. So, suppose v is a proper prefix of $0w_1w_2$. We must show that diff $v \leq 0$.

- (B \rightarrow 0BB) Suppose $w_1, w_2 \in \Pi_B$, and assume the inductive hypothesis, $w_1, w_2 \in Y$. Thus w_1 and w_2 are nonempty. We must show that $0w_1w_2 \in Y$. Clearly, diff $(0w_1w_2) = -1 + 1 + 1 = 1$. So, suppose v is a proper prefix of $0w_1w_2$. We must show that diff $v \leq 0$. There are three cases to consider.
 - Suppose v = %. Then **diff** $v = 0 \le 0$.

- (B \rightarrow 0BB) Suppose $w_1, w_2 \in \Pi_B$, and assume the inductive hypothesis, $w_1, w_2 \in Y$. Thus w_1 and w_2 are nonempty. We must show that $0w_1w_2 \in Y$. Clearly, diff $(0w_1w_2) = -1 + 1 + 1 = 1$. So, suppose v is a proper prefix of $0w_1w_2$. We must show that diff $v \leq 0$. There are three cases to consider.
 - Suppose v = %. Then **diff** $v = 0 \le 0$.
 - Suppose v = 0u, for a proper prefix u of w_1 . Because $w_1 \in Y$, we have that diff $u \le 0$. Thus diff $v = -1 + \text{diff } u \le -1 + 0 \le 0$.

- (B \rightarrow 0BB) Suppose $w_1, w_2 \in \Pi_B$, and assume the inductive hypothesis, $w_1, w_2 \in Y$. Thus w_1 and w_2 are nonempty. We must show that $0w_1w_2 \in Y$. Clearly, diff $(0w_1w_2) = -1 + 1 + 1 = 1$. So, suppose v is a proper prefix of $0w_1w_2$. We must show that diff $v \leq 0$. There are three cases to consider.
 - Suppose v = %. Then **diff** $v = 0 \le 0$.
 - Suppose v = 0u, for a proper prefix u of w_1 . Because $w_1 \in Y$, we have that diff $u \le 0$. Thus diff $v = -1 + \text{diff } u \le -1 + 0 \le 0$.
 - Suppose $v = 0w_1u$, for a proper prefix u of w_2 . Because $w_2 \in Y$, we have that diff $u \le 0$. Thus diff $v = -1 + 1 + \text{diff } u = \text{diff } u \le 0$.

- (B \rightarrow 0BB) Suppose $w_1, w_2 \in \Pi_B$, and assume the inductive hypothesis, $w_1, w_2 \in Y$. Thus w_1 and w_2 are nonempty. We must show that $0w_1w_2 \in Y$. Clearly, diff $(0w_1w_2) = -1 + 1 + 1 = 1$. So, suppose v is a proper prefix of $0w_1w_2$. We must show that diff $v \leq 0$. There are three cases to consider.
 - Suppose v = %. Then **diff** $v = 0 \le 0$.
 - Suppose v = 0u, for a proper prefix u of w_1 . Because $w_1 \in Y$, we have that diff $u \le 0$. Thus diff $v = -1 + \text{diff } u \le -1 + 0 \le 0$.

• Suppose $v = 0w_1u$, for a proper prefix u of w_2 . Because $w_2 \in Y$, we have that diff $u \le 0$. Thus diff $v = -1 + 1 + \text{diff } u = \text{diff } u \le 0$.

• The remaining productions are handled similarly.