
4.4: Simplification of Grammars

In this section, we say what it means for a grammar to be
simplified, give a simplification algorithm for grammars, and see
how to use this algorithm in Forlan.

1 / 22

Motivating Example

Suppose G is the grammar

A→ BB1,

B→ 0 | A | CD,

C→ 12,

D→ 1D2.

Question: what is odd about this grammar?

Answer:

2 / 22

Motivating Example

Suppose G is the grammar

A→ BB1,

B→ 0 | A | CD,

C→ 12,

D→ 1D2.

Question: what is odd about this grammar?

Answer: First, D doesn’t generate anything.

2 / 22

Motivating Example

Suppose G is the grammar

A→ BB1,

B→ 0 | A | CD,

C→ 12,

D→ 1D2.

Question: what is odd about this grammar?

Answer: First, D doesn’t generate anything.

Second, there is no valid parse tree that starts at G ’s start
variable, A, has a yield that is in {0, 1, 2}∗ = alphabetG , and
makes use of C.

2 / 22

Reachable, Generating and Useful Variables

Suppose G is a grammar. We say that a variable q of G is:

• reachable in G iff there is a w ∈ Str such that w is parsable
from sG using G , and q ∈ alphabetw ;

3 / 22

Reachable, Generating and Useful Variables

Suppose G is a grammar. We say that a variable q of G is:

• reachable in G iff there is a w ∈ Str such that w is parsable
from sG using G , and q ∈ alphabetw ;

• generating in G iff there is a w ∈ Str such that q generates w
using G , i.e., w is parsable from q using G , and
w ∈ (alphabetG)∗;

3 / 22

Reachable, Generating and Useful Variables

Suppose G is a grammar. We say that a variable q of G is:

• reachable in G iff there is a w ∈ Str such that w is parsable
from sG using G , and q ∈ alphabetw ;

• generating in G iff there is a w ∈ Str such that q generates w
using G , i.e., w is parsable from q using G , and
w ∈ (alphabetG)∗;

• useful in G iff q is both reachable and generating in G .

3 / 22

Redundant Productions

Now, suppose H is the grammar

A→% | 0 | AA | AAA.

What is odd about this grammar?

4 / 22

Redundant Productions

Now, suppose H is the grammar

A→% | 0 | AA | AAA.

What is odd about this grammar?

Here, the productions A→ AA and A→ AAA are redundant,
although only one of them can be removed:

A

A A A A

A A%

A

A

4 / 22

Redundant Productions

Given a grammar G and a finite subset U of { (q, x) | q ∈ QG and
x ∈ Str }, we write G/U for the grammar that is identical to G

except that its set of productions is U.

5 / 22

Redundant Productions

Given a grammar G and a finite subset U of { (q, x) | q ∈ QG and
x ∈ Str }, we write G/U for the grammar that is identical to G

except that its set of productions is U.

If G is a grammar and (q, x) ∈ PG , we say that:

• (q, x) is redundant in G iff x is parsable from q using H,
where H = G/(PG − {(q, x)}); and

5 / 22

Redundant Productions

Given a grammar G and a finite subset U of { (q, x) | q ∈ QG and
x ∈ Str }, we write G/U for the grammar that is identical to G

except that its set of productions is U.

If G is a grammar and (q, x) ∈ PG , we say that:

• (q, x) is redundant in G iff x is parsable from q using H,
where H = G/(PG − {(q, x)}); and

• (q, x) is irredundant in G iff (q, x) is not redundant in G .

5 / 22

Simplified Grammars

A grammar G is simplified iff either

• every variable of G is useful, and every production of G is
irredundant; or

• |QG | = 1 and PG = ∅.

6 / 22

Simplified Grammars

A grammar G is simplified iff either

• every variable of G is useful, and every production of G is
irredundant; or

• |QG | = 1 and PG = ∅.

Proposition 4.4.2

If G is a simplified grammar, then alphabetG = alphabet(L(G)).

6 / 22

Simplified Grammars

Proof. Suppose a ∈ alphabetG . We must show that
a ∈ alphabetw for some w ∈ L(G).

We have that every variable of G is useful, and there are q ∈ QG

and x ∈ Str such that (q, x) ∈ PG and a ∈ alphabet x .

✷

7 / 22

Simplified Grammars

Proof. Suppose a ∈ alphabetG . We must show that
a ∈ alphabetw for some w ∈ L(G).

We have that every variable of G is useful, and there are q ∈ QG

and x ∈ Str such that (q, x) ∈ PG and a ∈ alphabet x .

Thus x is parsable from q. Since every variable occurring in x is
generating, we have that q generates a string x ′ containing a.

✷

7 / 22

Simplified Grammars

Proof. Suppose a ∈ alphabetG . We must show that
a ∈ alphabetw for some w ∈ L(G).

We have that every variable of G is useful, and there are q ∈ QG

and x ∈ Str such that (q, x) ∈ PG and a ∈ alphabet x .

Thus x is parsable from q. Since every variable occurring in x is
generating, we have that q generates a string x ′ containing a.

Since q is reachable, there is a string y such that y is parsable
from sG , and q ∈ alphabet y . Since every variable occurring in y

is generating, there is a string y ′ such that y ′ is parsable from sG ,
and q is the only variable of alphabet y ′.

✷

7 / 22

Simplified Grammars

Proof. Suppose a ∈ alphabetG . We must show that
a ∈ alphabetw for some w ∈ L(G).

We have that every variable of G is useful, and there are q ∈ QG

and x ∈ Str such that (q, x) ∈ PG and a ∈ alphabet x .

Thus x is parsable from q. Since every variable occurring in x is
generating, we have that q generates a string x ′ containing a.

Since q is reachable, there is a string y such that y is parsable
from sG , and q ∈ alphabet y . Since every variable occurring in y

is generating, there is a string y ′ such that y ′ is parsable from sG ,
and q is the only variable of alphabet y ′.

Putting these facts together, we have that sG generates a string w

such that a ∈ alphabetw , i.e., a ∈ alphabetw for some
w ∈ L(G). ✷

7 / 22

Algorithm for Removing Redundant Productions

Given a grammar G , q ∈ QG and x ∈ Str, we say that (q, x) is
implicit in G iff x is parsable from q using G .

8 / 22

Algorithm for Removing Redundant Productions

Given a grammar G , q ∈ QG and x ∈ Str, we say that (q, x) is
implicit in G iff x is parsable from q using G .

Given a grammar G , we define a function
remRedunG ∈ P PG ×P PG →P PG by well-founded recursion on
the size of its second argument.

For U,V ⊆ PG , remRedun(U,V) proceeds as follows:

8 / 22

Algorithm for Removing Redundant Productions

Given a grammar G , q ∈ QG and x ∈ Str, we say that (q, x) is
implicit in G iff x is parsable from q using G .

Given a grammar G , we define a function
remRedunG ∈ P PG ×P PG →P PG by well-founded recursion on
the size of its second argument.

For U,V ⊆ PG , remRedun(U,V) proceeds as follows:

• If V = ∅, then it returns U.

8 / 22

Algorithm for Removing Redundant Productions

Given a grammar G , q ∈ QG and x ∈ Str, we say that (q, x) is
implicit in G iff x is parsable from q using G .

Given a grammar G , we define a function
remRedunG ∈ P PG ×P PG →P PG by well-founded recursion on
the size of its second argument.

For U,V ⊆ PG , remRedun(U,V) proceeds as follows:

• If V = ∅, then it returns U.

• Otherwise, let v be the greatest element of { (q, x) ∈ V |
there are no p ∈ Sym and y ∈ Str such that (p, y) ∈ V and
|y | > |x | }, and V ′ = V − {v}.

8 / 22

Algorithm for Removing Redundant Productions

Given a grammar G , q ∈ QG and x ∈ Str, we say that (q, x) is
implicit in G iff x is parsable from q using G .

Given a grammar G , we define a function
remRedunG ∈ P PG ×P PG →P PG by well-founded recursion on
the size of its second argument.

For U,V ⊆ PG , remRedun(U,V) proceeds as follows:

• If V = ∅, then it returns U.

• Otherwise, let v be the greatest element of { (q, x) ∈ V |
there are no p ∈ Sym and y ∈ Str such that (p, y) ∈ V and
|y | > |x | }, and V ′ = V − {v}. If v is implicit in G/(U ∪ V ′),
then remRedun returns the result of evaluating
remRedun(U,V ′).

8 / 22

Algorithm for Removing Redundant Productions

Given a grammar G , q ∈ QG and x ∈ Str, we say that (q, x) is
implicit in G iff x is parsable from q using G .

Given a grammar G , we define a function
remRedunG ∈ P PG ×P PG →P PG by well-founded recursion on
the size of its second argument.

For U,V ⊆ PG , remRedun(U,V) proceeds as follows:

• If V = ∅, then it returns U.

• Otherwise, let v be the greatest element of { (q, x) ∈ V |
there are no p ∈ Sym and y ∈ Str such that (p, y) ∈ V and
|y | > |x | }, and V ′ = V − {v}. If v is implicit in G/(U ∪ V ′),
then remRedun returns the result of evaluating
remRedun(U,V ′). Otherwise, it returns the result of
evaluating remRedun(U ∪ {v},V ′).

8 / 22

Algorithm for Removing Redundant Productions

Given a grammar G , q ∈ QG and x ∈ Str, we say that (q, x) is
implicit in G iff x is parsable from q using G .

Given a grammar G , we define a function
remRedunG ∈ P PG ×P PG →P PG by well-founded recursion on
the size of its second argument.

For U,V ⊆ PG , remRedun(U,V) proceeds as follows:

• If V = ∅, then it returns U.

• Otherwise, let v be the greatest element of { (q, x) ∈ V |
there are no p ∈ Sym and y ∈ Str such that (p, y) ∈ V and
|y | > |x | }, and V ′ = V − {v}. If v is implicit in G/(U ∪ V ′),
then remRedun returns the result of evaluating
remRedun(U,V ′). Otherwise, it returns the result of
evaluating remRedun(U ∪ {v},V ′).

Our algorithm for removing redundant productions of a grammar
G returns G/(remRedunG (∅,PG)).

8 / 22

Algorithm for Removing Redundant Productions

For example, if we run our algorithm for removing redundant
productions on

A→% | 0 | AA | AAA,

we obtain

A→% | 0 | AA.

9 / 22

Simplification Algorithm

Our simplification algorithm for grammars proceeds as follows,
given a grammar G .

• First, it determines which variables of G are generating. If sG
isn’t one of these variables, then it returns the grammar with
variable sG and no productions.

10 / 22

Simplification Algorithm

Our simplification algorithm for grammars proceeds as follows,
given a grammar G .

• First, it determines which variables of G are generating. If sG
isn’t one of these variables, then it returns the grammar with
variable sG and no productions.

• Next, it turns G into a grammar G ′ by deleting all
non-generating variables, and deleting all productions
involving such variables.

10 / 22

Simplification Algorithm

Our simplification algorithm for grammars proceeds as follows,
given a grammar G .

• First, it determines which variables of G are generating. If sG
isn’t one of these variables, then it returns the grammar with
variable sG and no productions.

• Next, it turns G into a grammar G ′ by deleting all
non-generating variables, and deleting all productions
involving such variables.

• Then, it determines which variables of G ′ are reachable.

10 / 22

Simplification Algorithm

Our simplification algorithm for grammars proceeds as follows,
given a grammar G .

• First, it determines which variables of G are generating. If sG
isn’t one of these variables, then it returns the grammar with
variable sG and no productions.

• Next, it turns G into a grammar G ′ by deleting all
non-generating variables, and deleting all productions
involving such variables.

• Then, it determines which variables of G ′ are reachable.

• Next, it turns G ′ into a grammar G ′′ by deleting all
non-reachable variables, and deleting all productions involving
such variables.

10 / 22

Simplification Algorithm

Our simplification algorithm for grammars proceeds as follows,
given a grammar G .

• First, it determines which variables of G are generating. If sG
isn’t one of these variables, then it returns the grammar with
variable sG and no productions.

• Next, it turns G into a grammar G ′ by deleting all
non-generating variables, and deleting all productions
involving such variables.

• Then, it determines which variables of G ′ are reachable.

• Next, it turns G ′ into a grammar G ′′ by deleting all
non-reachable variables, and deleting all productions involving
such variables.

• Finally, it removes redundant productions from G ′′.

10 / 22

Simplification Example

Suppose G , once again, is the grammar

A→ BB1,

B→ 0 | A | CD,

C→ 12,

D→ 1D2.

Here is what happens if we apply our simplification algorithm to G .

First, we determine which variables are generating.

11 / 22

Simplification Example

Suppose G , once again, is the grammar

A→ BB1,

B→ 0 | A | CD,

C→ 12,

D→ 1D2.

Here is what happens if we apply our simplification algorithm to G .

First, we determine which variables are generating. Clearly B and
C are. And, since B is, it follows that A is, because of the
production A→ BB1. (If this production had been A→ BD1, we
wouldn’t have added A to our set.)

11 / 22

Simplification Example (Cont.)

Thus, we form G ′ from G by deleting the variable D, yielding the
grammar

A→ BB1,

B→ 0 | A,

C→ 12.

Next, we determine which variables of G ′ are reachable.

12 / 22

Simplification Example (Cont.)

Thus, we form G ′ from G by deleting the variable D, yielding the
grammar

A→ BB1,

B→ 0 | A,

C→ 12.

Next, we determine which variables of G ′ are reachable. Clearly A
is, and thus B is, because of the production A→ BB1.

12 / 22

Simplification Example (Cont.)

Thus, we form G ′ from G by deleting the variable D, yielding the
grammar

A→ BB1,

B→ 0 | A,

C→ 12.

Next, we determine which variables of G ′ are reachable. Clearly A
is, and thus B is, because of the production A→ BB1.

Note that, if we carried out the two stages of our simplification
algorithm in the other order, then C and its production would
never be deleted.

12 / 22

Simplification Example (Cont.)

Next, we form G ′′ from G ′ by deleting the variable C, yielding the
grammar

A→ BB1,

B→ 0 | A.

13 / 22

Simplification Example (Cont.)

Next, we form G ′′ from G ′ by deleting the variable C, yielding the
grammar

A→ BB1,

B→ 0 | A.

Finally, we would remove redundant productions from G ′′. But G ′′

has no redundant productions, and so we are done.

13 / 22

Simplification Function

We define a function simplify ∈ Gram→ Gram by: for all
G ∈ Gram, simplifyG is the result of running the above algorithm
on G .

Theorem 4.4.3

For all G ∈ Gram:

(1) simplifyG is simplified;

(2) simplifyG ≈ G; and

(3) alphabet(simplifyG) = alphabet(L(G)) ⊆ alphabetG.

14 / 22

Testing Whether L(G) = ∅

Our simplification algorithm gives us an algorithm for testing
whether the language generated by a grammar G is empty. We
first simplify G , calling the result H. We then test whether

15 / 22

Testing Whether L(G) = ∅

Our simplification algorithm gives us an algorithm for testing
whether the language generated by a grammar G is empty. We
first simplify G , calling the result H. We then test whether
PH = ∅. If the answer is “yes”, clearly L(G) = L(H) = ∅. And if
the answer is “no”, then sH is useful, and so H (and thus G)
generates at least one string.

15 / 22

Simplification in Forlan

The Forlan module Gram defines the functions

val simplify : gram -> gram

val simplified : gram -> bool

16 / 22

Forlan Examples

Suppose gram of type gram is bound to the grammar

A→ BB1,

B→ 0 | A | CD,

C→ 12,

D→ 1D2.

We can simplify our grammar as follows:

- val gram’ = Gram.simplify gram;

val gram’ = - : gram

- Gram.output("", gram’);

{variables} A, B {start variable} A

{productions} A -> BB1; B -> 0 | A

val it = () : unit

17 / 22

Forlan Examples

Suppose gram’’ of type gram is bound to the grammar

A→% | 0 | AA | AAA | AAAA.

We can simplify our grammar as follows:

- val gram’’’ = Gram.simplify gram’’;

val gram’’’ = - : gram

- Gram.output("", gram’’’);

{variables} A {start variable} A

{productions} A -> % | 0 | AA

val it = () : unit

18 / 22

Hand-simplification Operations

Given a simplified grammar G , there are often ways we can
hand-simplify the grammar further. Below are two examples.

Suppose G has a variable q that is not sG , and where no
production having q as its left-hand side is self-recursive, i.e., has q
as one of the symbols of its right-hand side. Let x1, . . . , xn be the
right-hand sides of all of q’s productions.

Then we can form an equivalent grammar G ′ by deleting q and its
productions from G , and transforming each remaining production
p → y of G into all the productions from p that can be formed by
substituting for each occurrence of q in y some choice of xi .

We refer to this operation as eliminating q from G .

19 / 22

Hand-simplification Operations

Suppose there is exactly one production of G involving sG , where
that production has the form sG → q, for some variable q of G .

Then we can form an equivalent grammar G ′ by deleting sG and
sG → q from G , and making q be the start variable of G ′.

We refer to this operation as restarting G .

20 / 22

Hand-simplification Operations

The Forlan module Gram has functions corresponding to these two
operations:

val eliminateVariable : gram * sym -> gram

val restart : gram -> gram

Both begin by simplifying the supplied grammar.

For instance, suppose gram is the grammar

A→ B,

B→ 0 | C3C,

C→ 1B2 | 2B1.

21 / 22

Hand-simplification Operations

Then we can proceed as follows:

- val gram’ =

= Gram.eliminateVariable

= (gram, Sym.fromString "C");

val gram’ = - : gram

- Gram.output("", gram’);

{variables} A, B {start variable} A

{productions}

A -> B; B -> 0 | 1B231B2 | 1B232B1 | 2B131B2 | 2B132B1

val it = () : unit

- val gram’’ = Gram.restart gram;

val gram’’ = - : gram

- Gram.output("", gram’’);

{variables} B, C {start variable} B

{productions} B -> 0 | C3C; C -> 1B2 | 2B1

val it = () : unit

22 / 22

