4.4: Simplification of Grammars

In this section, we say what it means for a grammar to be simplified, give a simplification algorithm for grammars, and see how to use this algorithm in Forlan.

Motivating Example

Suppose G is the grammar

$$\begin{split} & \mathsf{A} \to \mathsf{BB1}, \\ & \mathsf{B} \to \mathsf{0} \mid \mathsf{A} \mid \mathsf{CD}, \\ & \mathsf{C} \to \mathsf{12}, \\ & \mathsf{D} \to \mathsf{1D2}. \end{split}$$

Question: what is odd about this grammar? Answer: First, D doesn't generate anything. Second, there is no valid parse tree that starts at *G*'s start variable, A, has a yield that is in $\{0, 1, 2\}^* =$ **alphabet** *G*, and makes use of C.

Reachable, Generating and Useful Variables

Suppose G is a grammar. We say that a variable q of G is:

- reachable in G iff there is a w ∈ Str such that w is parsable from s_G using G, and q ∈ alphabet w;
- generating in G iff there is a w ∈ Str such that q generates w using G, i.e., w is parsable from q using G, and w ∈ (alphabet G)*;
- useful in G iff q is both reachable and generating in G.

Redundant Productions

Now, suppose H is the grammar

 $A \rightarrow \% \mid 0 \mid AA \mid AAA.$

What is odd about this grammar?

Here, the productions A \rightarrow AA and A \rightarrow AAA are redundant, although only one of them can be removed:

Redundant Productions

Given a grammar G and a finite subset U of $\{(q, x) | q \in Q_G \text{ and } x \in \mathbf{Str}\}$, we write G/U for the grammar that is identical to G except that its set of productions is U.

If G is a grammar and $(q, x) \in P_G$, we say that:

- (q, x) is redundant in G iff x is parable from q using H, where $H = G/(P_G - \{(q, x)\})$; and
- (q, x) is irredundant in G iff (q, x) is not redundant in G.

Simplified Grammars

A grammar G is simplified iff either

- every variable of *G* is useful, and every production of *G* is irredundant; or
- $|Q_G| = 1$ and $P_G = \emptyset$.

Proposition 4.4.1

If G is a simplified grammar, then alphabet G = alphabet(L(G)).

Simplified Grammars

Proof. Suppose $a \in \text{alphabet } G$. We must show that $a \in \text{alphabet } w$ for some $w \in L(G)$.

We have that every variable of G is useful, and there are $q \in Q_G$ and $x \in Str$ such that $(q, x) \in P_G$ and $a \in alphabet x$.

Thus x is parable from q. Since every variable occurring in x is generating, we have that q generates a string x' containing a.

Since q is reachable, there is a string y such that y is parsable from s_G , and $q \in$ **alphabet** y. Since every variable occurring in y is generating, there is a string y' such that y' is parsable from s_G , and q is the only variable of **alphabet** y'.

Putting these facts together, we have that s_G generates a string w such that $a \in alphabet w$, i.e., $a \in alphabet w$ for some $w \in L(G)$. \Box

Algorithm for Removing Redundant Productions

Given a grammar G, $q \in Q_G$ and $x \in Str$, we say that (q, x) is implicit in G iff x is parable from q using G.

Given a grammar G, we define a function **remRedun**_G $\in \mathcal{P} P_G \times \mathcal{P} P_G \to \mathcal{P} P_G$ by well-founded recursion on the size of its second argument.

For $U, V \subseteq P_G$, remRedun(U, V) proceeds as follows:

- If $V = \emptyset$, then it returns U.
- Otherwise, let v be the greatest element of $\{(q, x) \in V |$ there are no $p \in Sym$ and $y \in Str$ such that $(p, y) \in V$ and |y| > |x|, and $V' = V - \{v\}$. If v is implicit in $G/(U \cup V')$, then **remRedun** returns the result of evaluating **remRedun**(U, V'). Otherwise, it returns the result of evaluating **remRedun** $(U \cup \{v\}, V')$.

Our algorithm for removing redundant productions of a grammar *G* returns $G/(\operatorname{remRedun}_G(\emptyset, P_G))$.

Algorithm for Removing Redundant Productions

For example, if we run our algorithm for removing redundant productions on

 $A \rightarrow \% \mid 0 \mid AA \mid AAA$,

we obtain

 $\mathsf{A} \to \% \mid \mathsf{0} \mid \mathsf{A}\mathsf{A}.$

Simplification Algorithm

Our simplification algorithm for grammars proceeds as follows, given a grammar G.

- First, it determines which variables of *G* are generating. If *s_G* isn't one of these variables, then it returns the grammar with variable *s_G* and no productions.
- Next, it turns *G* into a grammar *G'* by deleting all non-generating variables, and deleting all productions involving such variables.
- Then, it determines which variables of G' are reachable.
- Next, it turns G' into a grammar G" by deleting all non-reachable variables, and deleting all productions involving such variables.
- Finally, it removes redundant productions from G''.

Simplification Example

Suppose G, once again, is the grammar

$$\begin{split} & \mathsf{A} \to \mathsf{BB1}, \\ & \mathsf{B} \to \mathsf{0} \mid \mathsf{A} \mid \mathsf{CD}, \\ & \mathsf{C} \to \mathsf{12}, \\ & \mathsf{D} \to \mathsf{1D2}. \end{split}$$

Here is what happens if we apply our simplification algorithm to *G*. First, we determine which variables are generating. Clearly B and C are. And, since B is, it follows that A is, because of the production $A \rightarrow BB1$. (If this production had been $A \rightarrow BD1$, we wouldn't have added A to our set.)

Simplification Example (Cont.)

Thus, we form G' from G by deleting the variable D, yielding the grammar

$$\begin{split} & A \rightarrow BB1, \\ & B \rightarrow 0 \mid A, \\ & C \rightarrow 12. \end{split}$$

Next, we determine which variables of G' are reachable. Clearly A is, and thus B is, because of the production $A \rightarrow BB1$.

Note that, if we carried out the two stages of our simplification algorithm in the other order, then C and its production would never be deleted.

Simplification Example (Cont.)

Next, we form G'' from G' by deleting the variable C, yielding the grammar

 $\label{eq:alpha} \begin{array}{l} \mathsf{A} \to \mathsf{B}\mathsf{B}\mathsf{1}, \\ \mathsf{B} \to \mathsf{0} \mid \mathsf{A}. \end{array}$

Finally, we would remove redundant productions from G''. But G'' has no redundant productions, and so we are done.

Simplification Function

We define a function simplify \in Gram \rightarrow Gram by: for all $G \in$ Gram, simplify G is the result of running the above algorithm on G.

Theorem 4.4.2

For all $G \in \mathbf{Gram}$:

- (1) **simplify** *G* is simplified;
- (2) simplify $G \approx G$; and
- (3) alphabet(simplify G) = alphabet(L(G)) \subseteq alphabet G.

Testing Whether $L(G) = \emptyset$

Our simplification algorithm gives us an algorithm for testing whether the language generated by a grammar *G* is empty. We first simplify *G*, calling the result *H*. We then test whether $P_H = \emptyset$. If the answer is "yes", clearly $L(G) = L(H) = \emptyset$. And if the answer is "no", then s_H is useful, and so *H* (and thus *G*) generates at least one string.

Simplification in Forlan

The Forlan module Gram defines the functions

val simplify : gram -> gram
val simplified : gram -> bool

Forlan Examples

Suppose gram of type gram is bound to the grammar

$$\begin{split} & \mathsf{A} \to \mathsf{B}\mathsf{B}\mathsf{1}, \\ & \mathsf{B} \to \mathsf{0} \mid \mathsf{A} \mid \mathsf{C}\mathsf{D}, \\ & \mathsf{C} \to \mathsf{1}\mathsf{2}, \\ & \mathsf{D} \to \mathsf{1}\mathsf{D}\mathsf{2}. \end{split}$$

We can simplify our grammar as follows:

```
- val gram' = Gram.simplify gram;
val gram' = - : gram
- Gram.output("", gram');
{variables} A, B {start variable} A
{productions} A -> BB1; B -> 0 | A
val it = () : unit
```

Forlan Examples

Suppose gram'' of type gram is bound to the grammar

 $A \rightarrow \% \mid 0 \mid AA \mid AAA \mid AAAA.$

We can simplify our grammar as follows:

```
- val gram''' = Gram.simplify gram'';
val gram''' = - : gram
- Gram.output("", gram''');
{variables} A {start variable} A
{productions} A -> % | 0 | AA
val it = () : unit
```

Given a simplified grammar G, there are often ways we can hand-simplify the grammar further. Below are two examples. Suppose G has a variable q that is not s_G , and where no production having q as its left-hand side is *self-recursive*, i.e., has qas one of the symbols of its right-hand side. Let x_1, \ldots, x_n be the right-hand sides of all of q's productions.

Then we can form an equivalent grammar G' by deleting q and its productions from G, and transforming each remaining production $p \rightarrow y$ of G into all the productions from p that can be formed by substituting for each occurrence of q in y some choice of x_i . We refer to this operation as *eliminating* q from G.

Suppose there is exactly one production of *G* involving s_G , where that production has the form $s_G \rightarrow q$, for some variable *q* of *G*. Then we can form an equivalent grammar *G'* by deleting s_G and $s_G \rightarrow q$ from *G*, and making *q* be the start variable of *G'*. We refer to this operation as *restarting G*.

The Forlan module Gram has functions corresponding to these two operations:

val eliminateVariable : gram * sym -> gram
val restart : gram -> gram

Both begin by simplifying the supplied grammar.

For instance, suppose gram is the grammar

$$\begin{split} & A \rightarrow B, \\ & B \rightarrow 0 \mid C3C, \\ & C \rightarrow 1B2 \mid 2B1. \end{split}$$

▲ □
 ▶
 21 / 22

Then we can proceed as follows:

```
- val gram' =
       Gram.eliminateVariable
        (gram, Sym.fromString "C");
=
val gram' = - : gram
- Gram.output("", gram');
{variables} A, B {start variable} A
{productions}
A -> B; B -> 0 | 1B231B2 | 1B232B1 | 2B131B2 | 2B132B1
val it = () : unit
- val gram'' = Gram.restart gram;
val gram'' = - : gram
- Gram.output("", gram'');
{variables} B, C {start variable} B
{productions} B -> 0 | C3C; C -> 1B2 | 2B1
val it = () : unit
```