
4.3: A Parsing Algorithm

In this section, we consider a simple, fairly inefficient parsing
algorithm that works for all context-free grammars. In Section 4.6,
we consider an efficient parsing method that works for grammars
for languages of operators of varying precedences and
associativities. Compilers courses cover efficient algorithms that
work for various subsets of the context free grammars.

1 / 16

Parsability

Suppose G is a grammar, w ∈ Str and a ∈ Sym. We consider an
algorithm for testing whether w is parsable from a using G .

If w 6∈ (QG ∪ alphabetG)∗ or a 6∈ QG ∪ alphabetw , then the
algorithm returns false.

Otherwise, it proceeds as follows.

2 / 16

Parsability

Let A = QG ∪ alphabetw and B = { x ∈ Str | x is a substring of
w }.

The algorithm generates the least subset X of A× B such that:

(1) For all a ∈ alphabetw , (a, a) ∈ X ;

(2) For all q ∈ QG , if q →% ∈ PG , then (q,%) ∈ X ; and

(3) For all q ∈ QG , n ∈ N− {0}, a1, . . . , an ∈ A and
x1, . . . , xn ∈ B , if

• q → a1 · · · an ∈ PG ,
• for all i ∈ [1 : n], (ai , xi) ∈ X , and
• x1 · · · xn ∈ B,

then (q, x1 · · · xn) ∈ X .

Since A× B is finite, this process terminates.

3 / 16

Parsability

For example, let G be the grammar

A→ BC | CD,

B→ 0 | CB,

C→ 1 | DD,

D→ 0 | BC,

and let w = 0010 and a = A = sG .

We have that:

• (0, 0) ∈ X ;

• (1, 1) ∈ X ;

• (B, 0) ∈ X , since B→ 0 ∈ PG , (0, 0) ∈ X and 0 ∈ B ;

• (C, 1) ∈ X , since C→ 1 ∈ PG , (1, 1) ∈ X and 1 ∈ B ;

• (D, 0) ∈ X , since D→ 0 ∈ PG , (0, 0) ∈ X and 0 ∈ B ;

4 / 16

Parsability

• (A, 01) ∈ X , since A→ BC ∈ PG , (B, 0) ∈ X , (C, 1) ∈ X and
01 ∈ B ;

• (A, 10) ∈ X , since A→ CD ∈ PG , (C, 1) ∈ X , (D, 0) ∈ X and
10 ∈ B ;

• (B, 10) ∈ X , since B→ CB ∈ PG , (C, 1) ∈ X , (B, 0) ∈ X and
10 ∈ B ;

• (C, 00) ∈ X , since C→ DD ∈ PG , (D, 0) ∈ X , (D, 0) ∈ X and
00 ∈ B ;

• (D, 01) ∈ X , since D→ BC ∈ PG , (B, 0) ∈ X , (C, 1) ∈ X and
01 ∈ B ;

5 / 16

Parsability

• (C, 001) ∈ X , since C→ DD ∈ PG , (D, 0) ∈ X , (D, 01) ∈ X

and 0(01) ∈ B ;

• (C, 010) ∈ X , since C→ DD ∈ PG , (D, 01) ∈ X , (D, 0) ∈ X

and (01)0 ∈ B ;

• (A, 0010) ∈ X , since A→ BC ∈ PG , (B, 0) ∈ X , (C, 010) ∈ X

and 0(010) ∈ B ;

• (B, 0010) ∈ X , since B→ CB ∈ PG , (C, 00) ∈ X , (B, 10) ∈ X

and (00)(10) ∈ B ;

• (D, 0010) ∈ X , since D→ BC ∈ PG , (B, 0) ∈ X , (C, 010) ∈ X

and 0(010) ∈ B ;

• Nothing more can be added to X . To verify this, one must
check that nothing new can be added to X using rule (3).

6 / 16

Parsability

Lemma 4.3.1

For all (b, x) ∈ X, there is a pt ∈ PT such that

• pt is valid for G ,

• rootLabel pt = b, and

• yield pt = x.

Lemma 4.3.2

For all pt ∈ PT, if

• pt is valid for G ,

• rootLabel pt ∈ A, and

• yield pt ∈ B,

then (rootLabel pt, yield pt) ∈ X.

7 / 16

Parsability

Thus, to determine if w is parsable from a, we just have to check
whether (a,w) ∈ X .

In the case of our example grammar, we have that w = 0010 is
parsable from a = A, since (A, 0010) ∈ X .

Hence 0010 ∈ L(G).

Note that any production whose right-hand side contains an
element of alphabetG − alphabetw won’t affect the generation
of X . Thus our algorithm ignores such productions.

8 / 16

Parsability

For efficiency, our parsability algorithm actually generates X in a
sequence of stages. At each point, it has subsets U and V of
A× B .

• First, it lets U = ∅ and sets V to be the union of
{ (a, a) | a ∈ alphabetw } and { (q,%) | (q,%) ∈ PG }. It
then enters its main loop.

• At a stage of the loop’s iteration, it lets Y be U ∪ V , and
then lets Z be the set of all (q, x1 · · · xn) such that n ≥ 1 and
there are a1, . . . , an ∈ A and i ∈ [1 : n] such that

• q → a1 · · · an ∈ PG ,
• (ai , xi) ∈ V ,
• for all k ∈ [1 : n]− {i}, (ak , xk) ∈ Y ,
• x1 · · · xn ∈ B, and
• (q, x1 · · · xn) 6∈ Y .

If Z 6= ∅, then it sets U to Y , and V to Z , and repeats;
Otherwise, the result is Y .

9 / 16

Parsing Algorithm

We say that a parse tree pt is a minimal parse of a string w from a
symbol a using a grammar G iff pt is valid for G , rootLabelpt = a

and yield pt = w , and there is no strictly smaller pt ′ ∈ PT such
that pt ′ is valid for G , rootLabel pt ′ = a and yield pt ′ = w .

We can convert our parsability algorithm into a parsing algorithm
as follows. Given w ∈ (QG ∪ alphabetG)∗ and
a ∈ (QG ∪ alphabetw), we generate our set X as before, but we
annotate each element (b, x) of X with a parse tree pt such that

• pt is valid for G ,

• rootLabel pt = b, and

• yield pt = x ,

Thus we can return the parse tree labeling (a,w), if this pair is in
X , and indicate failure otherwise.

10 / 16

Parsing Algorithm

With a little more work, we can arrange that the parse trees
returned by our parsing algorithm are minimally-sized, and this is
what the official version of our parsing algorithm guarantees.

This goal is a little tricky to achieve, since some pairs will first be
labeled by parse trees that aren’t minimally sized.

But we keep going as long as either new pairs are found, or smaller
parse trees are found for existing pairs.

11 / 16

Parsing in Forlan

The Forlan module Gram defines the functions

val parsable : gram -> sym * str -> bool

val generatedFromVariable : gram -> sym * str -> bool

val generated : gram -> str -> bool

The function parsable tests whether a string w is parsable from a
symbol a using a grammar G . The function
generatedFromVariable tests whether a string w is generated
from a variable q using a grammar G ; it issues an error message if
q isn’t a variable of G . And the function generated tests whether
a string w is generated by a grammar G .

12 / 16

Parsing in Forlan

Gram also includes:

val parse : gram -> sym * str -> pt

val parseAlphabetFromVariable : gram -> sym * str -> pt

val parseAlphabet : gram -> str -> pt

The function parse tries to find a minimal parse of a string w

from a symbol a using a grammar G ; it issues an error message if
w 6∈ (QG ∪ alphabetG)∗, or a 6∈ QG ∪ alphabetw , or such a
parse doesn’t exist. The function parseAlphabetFromVariable

tries to find a minimal parse of a string w ∈ (alphabetG)∗ from a
variable q using a grammar G ; it issues an error message if
q 6∈ QG , or w 6∈ (alphabetG)∗, or such a parse doesn’t exist. And
the function parseAlphabet tries to find a minimal parse of a
string w ∈ (alphabetG)∗ from sG using a grammar G ; it issues an
error message if w 6∈ (alphabetG)∗, or such a parse doesn’t exist.

13 / 16

Parsing in Forlan

Suppose that gram of type gram is bound to the grammar

A→ BC | CD,

B→ 0 | CB,

C→ 1 | DD,

D→ 0 | BC.

We can check whether some strings are generated by this grammar
as follows:

- Gram.generated gram (Str.fromString "0010");

val it = true : bool

- Gram.generated gram (Str.fromString "0100");

val it = true : bool

- Gram.generated gram (Str.fromString "0101");

val it = false : bool

14 / 16

Forlan Parsing Examples

And we can try to find parses of some strings as follows:

- fun test s =

= PT.output

= ("",

= Gram.parseAlphabet gram (Str.fromString s));

val test = fn : string -> unit

- test "0010";

A(C(D(0), D(B(0), C(1))), D(0))

val it = () : unit

- test "0100";

A(C(D(B(0), C(1)), D(0)), D(0))

val it = () : unit

- test "0101";

no such parse exists

uncaught exception Error

15 / 16

Forlan Parsing Examples

But we can also check parsability of strings containing variables, as
well as try to find parses of such strings:

- Gram.parsable gram

= (Sym.fromString "A", Str.fromString "0D0C");

val it = true : bool

- PT.output

= ("",

= Gram.parse gram

= (Sym.fromString "A", Str.fromString "0D0C"));

A(C(D(0), D), D(B(0), C))

val it = () : unit

16 / 16

