
4.2: Isomorphism of Grammars

In this section, we study grammar isomorphism, i.e., the way in
which grammars can have the same structure, even though they
may have different variables.

1 / 10



Definition and Algorithm

Suppose G is the grammar with variables A and B, start variable A
and productions:

A→ 0A1 | B,

B→% | 2A.

And, suppose H is the grammar with variables B and A, start
variable B and productions:

B→ 0B1 | A,

A→% | 2B.

Question: how are G and H related?

Answer: H can be formed from G by renaming the variables A and
B of G to B and A, respectively.

As a result, we say that G and H are isomorphic.
2 / 10



On the Subtlety of Isomorphism

Suppose G is as before, but that H is the grammar with variables
2 and A, start variable 2 and productions:

2→ 021 | A,

A→% | 22.

Then H can be formed from G by renaming the variables A and B
to 2 and A, respectively.

Question: should we consider G and H to be isomorphic?

Answer: no—the symbol 2 is in both alphabetG and QH . In fact,
G and H generate different languages.

A grammar’s variables (e.g., A) can’t be renamed to elements of
the grammar’s alphabet (e.g., 2).

3 / 10



Definition of Isomorphism

An isomorphism h from a grammar G to a grammar H is a
bijection from QG to QH such that:

• h turns G into H;

• alphabetG ∩QH = ∅, i.e., none of the symbols in G ’s
alphabet are variables of H.

We say that G and H are isomorphic iff there is an isomorphism
between G and H.

As expected, we have that the relation of being isomorphic is
reflexive on Gram, symmetric and transitive, and that isomorphism
implies having the same alphabet and equivalence.

There is an algorithm for finding an isomorphism from one
grammar to another, if one exists, or reporting that there is no
such isomorphism. It’s similar to the algorithm for finding an
isomorphism between finite automata.

4 / 10



Renaming Variables

The function renameVariables takes in a pair (G , f ), where G is a
grammar and f is a bijection from QG to a set of symbols with the
property that range f ∩ alphabetG = ∅, and returns the grammar
produced from G by renaming G ’s variables using the bijection f .
The resulting grammar will be isomorphic to G .

5 / 10



Renaming Variables

The following function is a special case of renameVariables. The
function renameVariablesCanonically ∈ Gram→ Gram renames
the variables of a grammar G to:

• A, B, etc., when the grammar has no more than 26 variables
(the smallest variable of G will be renamed to A, the next
smallest one to B, etc.); or

• 〈1〉, 〈2〉, etc., otherwise.

These variables will actually be surrounded by a uniform number of
extra brackets, if this is needed to make the new grammar’s
variables and the original grammar’s alphabet be disjoint.

6 / 10



Isomorphism Finding/Checking in Forlan

The Forlan module Gram contains the following functions for
finding and processing isomorphisms in Forlan:

val isomorphism :

gram * gram * sym_rel -> bool

val findIsomorphism : gram * gram -> sym_rel

val isomorphic : gram * gram -> bool

val renameVariables : gram * sym_rel -> gram

val renameVariablesCanonically : gram -> gram

7 / 10



Forlan Examples

Suppose the identifier gram of type gram is bound to the grammar
with variables A and B, start variable A and productions:

A→ 0A1 | B,

B→% | 2A.

Suppose the identifier gram’ of type gram is bound to the
grammar with variables B and A, start variable B and productions:

B→ 0B1 | A,

A→% | 2B.

And, suppose the identifier gram’’ of type gram is bound to the
grammar with variables 2 and A, start variable 2 and productions:

2→ 021 | A,

A→% | 22.

8 / 10



Forlan Examples

Here are some examples of how the above functions can be used:

- val rel = Gram.findIsomorphism(gram, gram’);

val rel = - : sym_rel

- SymRel.output("", rel);

(A, B), (B, A)

val it = () : unit

- Gram.isomorphism(gram, gram’, rel);

val it = true : bool

- Gram.isomorphic(gram, gram’’);

val it = false : bool

- Gram.isomorphic(gram’, gram’’);

val it = false : bool

9 / 10



Forlan Examples

- val gram = Gram.input "";

@ {variables} B, C

@ {start variable} B

@ {productions} B -> AC; C -> <A>

@ .

val gram = - : gram

- SymSet.output("", Gram.alphabet gram);

A, <A>

val it = () : unit

- Gram.output

= ("", Gram.renameVariablesCanonically gram);

{variables} <<A>>, <<B>> {start variable} <<A>>

{productions} <<A>> -> A<<B>>; <<B>> -> <A>

val it = () : unit

10 / 10


