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Let L be the language { 0n1n2n | n ∈ N }.

Question: is L context-free? I.e., is there a grammar that
generates L?

Answer:
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4.10: The Pumping Lemma for Context-free

Languages

Let L be the language { 0n1n2n | n ∈ N }.

Question: is L context-free? I.e., is there a grammar that
generates L?

Answer: No. Intuitively, although it’s easy to keep the 0’s and 1’s
matched, or to keep the 1’s and 2’s matched, or to keep the 0’s
and 2’s matched, there is no way to keep all three symbols
matched simultaneously.
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Introduction

In this section, we will study the pumping lemma for context-free
languages, which can be used to show that many languages are not
context-free.

We will use the pumping lemma to prove that L is not
context-free, and then we will prove the lemma.

Building on this result, we’ll be able to show that the context-free
languages are not closed under intersection, complementation or
set-difference.
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for all z ∈ Str, if z ∈ L and |z | ≥ n, then there are

u, v ,w , x , y ∈ Str such that z = uvwxy and

(1) |vwx | ≤ n;

(2) vx 6= %; and

(3) uv iwx iy ∈ L, for all i ∈ N.
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Example Use of Pumping Lemma

Before proving the pumping lemma, let’s see how it can be used to
show that L = { 0n1n2n | n ∈ N } is not context-free. Suppose,
toward a contradiction that L is context-free. Thus there is an
n ∈ N− {0} with the property of the lemma. Let z =
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toward a contradiction that L is context-free. Thus there is an
n ∈ N− {0} with the property of the lemma. Let z = 0n1n2n.
Since z ∈ L and |z | = 3n ≥ n, we have that there are
u, v ,w , x , y ∈ Str such that z = uvwxy and
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Example Use of Pumping Lemma

Before proving the pumping lemma, let’s see how it can be used to
show that L = { 0n1n2n | n ∈ N } is not context-free. Suppose,
toward a contradiction that L is context-free. Thus there is an
n ∈ N− {0} with the property of the lemma. Let z = 0n1n2n.
Since z ∈ L and |z | = 3n ≥ n, we have that there are
u, v ,w , x , y ∈ Str such that z = uvwxy and

(1) |vwx | ≤ n;

(2) vx 6= %; and

(3) uv iwx iy ∈ L, for all i ∈ N.

Since 0n1n2n = z = uvwxy , (1) tells us that vwx doesn’t contain
both a 0 and a 2. Thus, vwx has no 0’s or vwx has no 2’s, so that
there are two cases to consider.
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Example

Suppose vwx has no 0’s. Thus vx has no 0’s. By (2), we have that
vx contains a 1 or a 2. Thus uwy :
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Example

Suppose vwx has no 0’s. Thus vx has no 0’s. By (2), we have that
vx contains a 1 or a 2. Thus uwy :

• has n 0’s; and

• has less than n 1’s or has less than n 2’s.

But (3) tells us that uwy = uv0wx0y ∈ L, so that uwy has an
equal number of 0’s, 1’s and 2’s—contradiction.

The case where vwx has no 2’s is similar.

Since we obtained a contradiction in both cases, we have an
overall contradiction. Thus L is not context-free.
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A Fact About CNF Grammars

When we prove the pumping lemma for context-free languages, we
will make use of a fact about grammars in Chomsky Normal Form.

Suppose G is a grammar in CNF and that w ∈ (alphabetG )∗ is
the yield of a valid parse tree pt for G whose root label is a
variable.

For instance, if G is the grammar with variable A and productions
A→ AA and A→ 0, then w could be 0000 and pt could be the
following tree of height 3:

A

A A AA

A

A

0 0 0 0
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CNF Fact

Generalizing from this example, we can see that if pt has height 3,
|w | will never be greater than 4 = 22 = 23−1.

Question: how can we express an upper bound for |w | as a
function of the height k of pt?

Answer: |w | ≤
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|w | will never be greater than 4 = 22 = 23−1.

Question: how can we express an upper bound for |w | as a
function of the height k of pt?

Answer: |w | ≤ 2k−1.

We can prove this by induction on pt.
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Maximal Length Paths through Parse Trees

A maximal length path through a tree of height k whose root label
is a variable will have length k and will pass through exactly k

variables.

E.g., the path [1, 2, 1] through

A

A A AA

A

A

0 0 0 0

(which goes to the left child, then to the right child, then to the
only child (the second leaf from the left)) has length 3 and visits 3
variables.
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Proof of Pumping Lemma

Proof. Suppose L is a context-free language.
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the preceding section, there is a grammar G in Chomsky Normal
Form such that L(G ) = L− {%}. Let k = |QG | and n = 2k . Thus
n ∈ N−{0}. Suppose z ∈ Str , z ∈ L and |z | ≥ n. Since n ≥ 1, we
have that z 6= %. Thus z ∈ L− {%} = L(G ), so that
z ∈ (alphabetG )∗ and there is a parse tree pt such that pt is valid
for G , rootLabel pt = sG and yield pt = z . By our fact about
CNF grammars, we have that the height of pt is at least k + 1. (If
pt’s height were only k , then |z | ≤ 2k−1 < n, which is impossible.)
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Proof

Proof (cont.). The rest of the proof can be visualized using the
diagram

sG

q

q

u v w x y

pt

pt′

pt ′′

pat
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Proof

Proof (cont.). Let pat be a valid path for pt whose length is
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and lower occurrences of q, respectively.
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Working from the last variable visited upwards, we look for the first
repetition of variables. Suppose q is this repeated variable, and let
pat ′ and pat ′′ be the initial parts of pat that take us to the upper
and lower occurrences of q, respectively.

Let pt ′ and pt ′′ be the subtrees of pt at positions pat ′ and pat ′′,
i.e., the positions of the upper and lower occurrences of q,
respectively.

Consider the tree formed from pt by replacing the subtree at
position pat ′ by q. This tree has yield uqy , for unique strings u
and y .
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Proof

Proof (cont.). Consider the tree formed from pt ′ by replacing
the subtree pt ′′ by q. More precisely, form the path pat ′′′ by
removing pat ′ from the beginning of pat ′′. Then replace the
subtree of pt ′ at position pat ′′′ by q. This tree has yield
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Proof (cont.). Consider the tree formed from pt ′ by replacing
the subtree pt ′′ by q. More precisely, form the path pat ′′′ by
removing pat ′ from the beginning of pat ′′. Then replace the
subtree of pt ′ at position pat ′′′ by q. This tree has yield vqx , for
unique strings v and x .

Furthermore, since |pat| is the height of pt, the length of the path
formed by removing pat ′ from pat will be the height of pt ′. But
we know that this length is at most k + 1, because, when working
upwards through the variables visited by pat, we stopped as soon
as we found a repetition of variables. Thus the height of pt ′ is at
most k + 1.

Let w be the yield of pt ′′. Thus vwx is the yield of pt ′, so that
z = uvwxy is the yield of pt. Because the height of pt ′ is at most
k + 1, our fact about valid parse trees of grammars in CNF, tells
us that |vwx | ≤ 2(k+1)−1 = 2k = n, showing that part (1) holds.
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Proof

Proof (cont.). Because G is in CNF, pt ′, which has q as its root
label, has two children. The child whose root node isn’t visited by
pat ′′′ will have a non-empty yield, and this yield will be a prefix of
, if this child is the left child, and will be a suffix of , if this child

is the right child.
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pat ′′′ will have a non-empty yield, and this yield will be a prefix of
v , if this child is the left child, and will be a suffix of x , if this child
is the right child. Thus vx 6= %, showing that part (2) holds.

It remains to show part (3), i.e., that uv iwx iy ∈ L(G ) ⊆ L, for all
i ∈ N. We define a valid parse tree pt i for G , with root label q and
yield v iwx i , by recursion on i ∈ N. We let pt0 be pt ′′. Then, if
i ∈ N, we form pt i+1 from pt ′ by replacing the subtree at position
pat ′′′ by pt i .
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is the right child. Thus vx 6= %, showing that part (2) holds.

It remains to show part (3), i.e., that uv iwx iy ∈ L(G ) ⊆ L, for all
i ∈ N. We define a valid parse tree pt i for G , with root label q and
yield v iwx i , by recursion on i ∈ N. We let pt0 be pt ′′. Then, if
i ∈ N, we form pt i+1 from pt ′ by replacing the subtree at position
pat ′′′ by pt i .

Suppose i ∈ N. Then the parse tree formed from pt by replacing
the subtree at position pat ′ by pt i is valid for G , has root label sG ,
and has yield uv iwx iy , showing that uv iwx iy ∈ L(G ). ✷
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Forlan Implementation of Pumping Lemma

The textbook describes the implementation in Forlan of the idea
behind the Pumping Lemma.
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Consequences of Pumping Lemma

Suppose

L = { 0n1n2n | n ∈ N },

A = { 0n1n2m | n,m ∈ N }, and

B = { 0n1m2m | n,m ∈ N }.

Of course, L is not context-free.

Question: are A and B context-free?

Answer:
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Of course, L is not context-free.

Question: are A and B context-free?

Answer: yes, it’s easy to find grammars that generate them.

Question: is A ∩ B context-free?

Answer: no—A ∩ B = L, and L is not context-free.

Thus the context-free languages are not closed under intersection.
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Consequences

Question: is {0, 1, 2}∗ − A context-free?

Answer:
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Consequences

Question: is {0, 1, 2}∗ − A context-free?

Answer: yes, since this language is the union of the context-free
languages

{0, 1, 2}∗ − {0}∗{1}∗{2}∗

and

{ 0n11n22m | n1, n2,m ∈ N and n1 6= n2 },

(the first of these languages is regular), and the context-free
languages are closed under union.

Similarly, we have that {0, 1, 2}∗ − B is context-free.
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Consequences

Let

C = ({0, 1, 2}∗ − A) ∪ ({0, 1, 2}∗ − B).

Thus C is a context-free subset of {0, 1, 2}∗ . Since
A,B ⊆ {0, 1, 2}∗, it is easy to show that

A ∩ B = {0, 1, 2}∗ − (({0, 1, 2}∗ − A) ∪ ({0, 1, 2}∗ − B))

= {0, 1, 2}∗ − C .
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A ∩ B = {0, 1, 2}∗ − (({0, 1, 2}∗ − A) ∪ ({0, 1, 2}∗ − B))

= {0, 1, 2}∗ − C .

Thus

{0, 1, 2}∗ − C = A ∩ B = L

is not context-free. Thus the context-free languages are not closed
under complementation or set difference.
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