
CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 4

Model Answers

Problem 1

(a) The finite automaton N is

B C

0

0 1

1

1

Start A

(b) First, we put the expression of N in Forlan’s syntax

{states} A, B, C {start state} A {accepting states} A, B, C

{transitions}

A, 0 -> B; A, 1 -> A;

B, 0 -> B; B, 1 -> C;

C, 1 -> A

in the file ps4-p1-fa (see the course website), and load this file into Forlan, calling the result

fa:

- val fa = FA.input "ps4-p1-fa";

val fa = - : fa

Next we load the file ps4-p1.sml

(* val inX : str -> bool

tests whether a string over the alphabet {0, 1} is in X *)

fun inX x =

Set.all

(fn y => not(Str.equal(y, Str.fromString "010")))

(StrSet.substrings x);

(* val upto : int -> str set

if n >= 0, then upto n returns all strings over alphabet {0, 1} of

length no more than n *)

fun upto 0 : str set = Set.sing nil

1

| upto n =

let val xs = upto(n - 1)

val ys = Set.filter (fn x => length x = n - 1) xs

in StrSet.union

(xs, StrSet.concat(StrSet.fromString "0, 1", ys))

end;

(* val partition : int -> str set * str set

if n >= 0, then partition n returns (xs, ys) where:

xs is all elements of upto n that are in X; and

ys is all elements of upto n that are not in X *)

fun partition n = Set.partition inX (upto n);

(* val test = fn : int -> fa -> str option * str option

if n >= 0, then test n returns a function f such that, for all FAs

fa, f fa returns a pair (xOpt, yOpt) such that:

If there is an element of {0, 1}* of length no more than n that

is in X but is not accepted by fa, then xOpt = SOME x for some

such x; otherwise, xOpt = NONE.

If there is an element of {0, 1}* of length no more than n that

is not in X but is accepted by fa, then yOpt = SOME y for some

such y; otherwise, yOpt = NONE. *)

fun test n =

let val (goods, bads) = partition n

in fn fa =>

let val accepted = FA.accepted fa

val goodNotAccOpt = Set.position (not o accepted) goods

val badAccOpt = Set.position accepted bads

in ((case goodNotAccOpt of

NONE => NONE

| SOME i => SOME(ListAux.sub(Set.toList goods, i))),

(case badAccOpt of

NONE => NONE

| SOME i => SOME(ListAux.sub(Set.toList bads, i))))

end

end;

(see the course website) defining the function test into Forlan:

- use "ps4-p1.sml";

[opening ps4-p1.sml]

2

val inX = fn : str -> bool

val upto = fn : int -> str set

val partition = fn : int -> str set * str set

val test = fn : int -> fa -> str option * str option

val it = () : unit

Finally, we apply test to arguments 10 and fa:

- test 10 fa;

val it = (NONE,NONE) : str option * str option

Problem 2

(a) First, we load the file ps4-p2-fa (see the course website) containing the expression

{states} A, B, C, D {start state} A {accepting states} B, C, D

{transitions}

A, % -> B | C | D;

B, 0 -> C;

C, 0 -> D; C, 1 -> B;

D, 1 -> C

of M in Forlan’s syntax into Forlan, calling the result fa:

- val fa = FA.input "ps4-p2-fa";

val fa = - : fa

Next, we define a function accPr that finds and prints a labeled path in fa explaining why a Forlan

string expressed as an SML string is accepted:

- fun accPr s =

= LP.output("", FA.findAcceptingLP fa (Str.fromString s));

val accPr = fn : string -> unit

Finally, we use this function to find and display the required labeled paths:

- accPr "0010110";

A, % => B, 0 => C, 0 => D, 1 => C, 0 => D, 1 => C, 1 => B, 0 => C

val it = () : unit

- accPr "1001101";

A, % => C, 1 => B, 0 => C, 0 => D, 1 => C, 1 => B, 0 => C, 1 => B

val it = () : unit

- accPr "1011001";

A, % => D, 1 => C, 0 => D, 1 => C, 1 => B, 0 => C, 0 => D, 1 => C

val it = () : unit

(b) Continuing our Forlan session, we first load the file ps4-p2.sml

fun accLen n =

Set.filter

(FA.accepted fa)

(StrSet.power(StrSet.fromString "0,1", n));

3

(see the course website) defining the function accLen into Forlan:

- use "ps4-p2.sml";

[opening ps4-p2.sml]

val accLen = fn : int -> str set

val it = () : unit

Then we apply it to 10, calling the resulting set of labeled paths lps, compute the size of lps, and

display its elements:

- val lps = accLen 10;

val lps = - : str set

- Set.size lps;

val it = 94 : int

- StrSet.output("", lps);

0010101010, 0010101011, 0010101100, 0010101101, 0010110010, 0010110011,

0010110100, 0010110101, 0011001010, 0011001011, 0011001100, 0011001101,

0011010010, 0011010011, 0011010100, 0011010101, 0100101010, 0100101011,

0100101100, 0100101101, 0100110010, 0100110011, 0100110100, 0100110101,

0101001010, 0101001011, 0101001100, 0101001101, 0101010010, 0101010011,

0101010100, 0101010101, 0101010110, 0101011001, 0101011010, 0101100101,

0101100110, 0101101001, 0101101010, 0110010101, 0110010110, 0110011001,

0110011010, 0110100101, 0110100110, 0110101001, 0110101010, 1001010101,

1001010110, 1001011001, 1001011010, 1001100101, 1001100110, 1001101001,

1001101010, 1010010101, 1010010110, 1010011001, 1010011010, 1010100101,

1010100110, 1010101001, 1010101010, 1010101011, 1010101100, 1010101101,

1010110010, 1010110011, 1010110100, 1010110101, 1011001010, 1011001011,

1011001100, 1011001101, 1011010010, 1011010011, 1011010100, 1011010101,

1100101010, 1100101011, 1100101100, 1100101101, 1100110010, 1100110011,

1100110100, 1100110101, 1101001010, 1101001011, 1101001100, 1101001101,

1101010010, 1101010011, 1101010100, 1101010101

val it = () : unit

Problem 3

Define a function dsfxs (for “diffs of suffixes”) from {0, 1}∗ to P Z by: for all w ∈ {0, 1}∗,

dsfxsw = {diff v | v is a suffix of w }.

From the definitions of X and dsfxs and the fact that suffixes are substrings, we have that, if w ∈ X ,

then dsfxsw ⊆ {−2,−1, 0, 1, 2}. It turns out, though, that we can characterize membership in X

using dsfxs.

Lemma PS4.3.1

For all w ∈ X and n,m ∈ dsfxsw, −2 ≤ m− n ≤ 2.

Proof. Suppose w ∈ X and n,m ∈ dsfxsw, so that there are suffixes u and v of w such that

n = diff u and m = diff v. Because u and v are suffixes of w, one must be a suffix of the other, and

so there are two cases to consider.

4

• Suppose u is a suffix of v. Thus v = zu for some z ∈ {0, 1}∗, and thus z is a substring of

w. Hence m = diff v = diff z + diff u = diff z + n, so that m − n = diff z. Because z is a

substring of w ∈ X , we have that −2 ≤ diff z ≤ 2, and thus −2 ≤ m− n ≤ 2.

• Suppose v is a suffix of u. Thus u = zv for some z ∈ {0, 1}∗, and thus z is a substring of

w. Hence n = diff u = diff z + diff v = diff z + m, so that n − m = diff z. Because z is

a substring of w ∈ X , we have that −2 ≤ diff z ≤ 2, and thus −2 ≤ n − m ≤ 2. Since

−2 ≤ n −m, we have that m− n = −(n −m) ≤ −(−2) = 2. And since n−m ≤ 2, we have

that −2 ≤ −(n−m) = m− n. Thus −2 ≤ m− n ≤ 2.

✷

Lemma PS4.3.2

For all w ∈ X , either dsfxsw ⊆ {−2,−1, 0} or dsfxsw ⊆ {−1, 0, 1} or dsfxsw ⊆ {0, 1, 2}.

Proof. Suppose w ∈ X . Thus dsfxsw ⊆ {−2,−1, 0, 1, 2}. Because % is a suffix of w, we have

that 0 = diff % ∈ dsfxsw. There are two cases to consider.

• Suppose −2 ∈ dsfxsw. Lemma PS4.3.1 tells us that neither 1 nor 2 are elements of dsfxsw,

since −2 − 1 = −3 and −2 − 2 = −4 are both < − 2. Thus dsfxsw ⊆ {−2,−1, 0}, so that

either dsfxsw ⊆ {−2,−1, 0} or dsfxsw ⊆ {−1, 0, 1} or dsfxsw ⊆ {0, 1, 2}.

• Suppose −2 /∈ dsfxsw. Then dsfxsw ⊆ {−1, 0, 1, 2}. There are two subcases to consider.

– Suppose 2 ∈ dsfxsw. Then Lemma PS4.3.1 tells us that −1 is not an element of dsfxsw,

since 2− (−1) = 3 is > 2. Thus dsfxsw ⊆ {0, 1, 2}, so that either dsfxsw ⊆ {−2,−1, 0}

or dsfxsw ⊆ {−1, 0, 1} or dsfxsw ⊆ {0, 1, 2}.

– Suppose 2 /∈ dsfxsw. Then dsfxsw ⊆ {−1, 0,−1}, so that either dsfxsw ⊆ {−2,−1, 0}

or dsfxsw ⊆ {−1, 0, 1} or dsfxsw ⊆ {0, 1, 2}.

✷

Lemma PS4.3.3

For all w ∈ {0, 1}∗ and n ∈ {−2,−1, 0}, if dsfxsw ⊆ {n, n+ 1, n+ 2}, then w ∈ X .

Proof. Suppose w ∈ {0, 1}∗, n ∈ {−2,−1, 0} and dsfxsw ⊆ {n, n + 1, n + 2}. To show that

w ∈ X , suppose v is a substring of w. Thus w = xvy for some x, y ∈ {0, 1}∗. We must show

that −2 ≤ diff v ≤ 2. Because y is a suffix of w, diff y ∈ dsfxsw, and thus n ≤ diff y ≤ n + 2.

Because vy is a suffix of w, diff(vy) ∈ dsfxsw, and thus n ≤ diff(vy) ≤ n + 2. And since

diff(vy) = diff v + diff y = diff y + diff v, it follows that n ≤ diff y + diff v ≤ n+ 2.

Suppose, toward a contradiction, that −2 ≤ diff v ≤ 2 is false. Thus there are two cases to

consider.

• Suppose diff v ≤ −3. Because diff y ≤ n+2, it follows that n ≤ diff y+diff v ≤ (n+2)+−3 =

n− 1, so that n ≤ n− 1—contradiction.

• Suppose 3 ≤ diff v. Because n ≤ diff y, it follows that n+3 ≤ diff y+diff v ≤ n+2, so that

3 ≤ 2—contradiction.

5

Because we obtained a contradiction in both cases, we have an overall contradiction. Thus −2 ≤

diff v ≤ 2, completing the proof that w ∈ X . ✷

Lemma PS4.3.4

For all w ∈ {0, 1}∗, if either dsfxsw ⊆ {−2,−1, 0} or dsfxsw ⊆ {−1, 0, 1} or dsfxsw ⊆ {0, 1, 2},

then w ∈ X .

Proof. Suppose w ∈ {0, 1}∗ and assume that either dsfxsw ⊆ {−2,−1, 0} or dsfxsw ⊆ {−1, 0, 1}

or dsfxsw ⊆ {0, 1, 2}. There are three case to consider.

• Suppose dsfxsw ⊆ {−2,−1, 0}. Because −2 ∈ {−2,−1, 0} and dsfxsw ⊆ {−2,−1, 0} =

{−2, (−2) + 1, (−2) + 2}, Lemma PS4.3.3 tells us that w ∈ X .

• Suppose dsfxsw ⊆ {−1, 0, 1}. Because −1 ∈ {−2,−1, 0} and dsfxsw ⊆ {−1, 0, 1} =

{−1, (−1) + 1, (−1) + 2}, Lemma PS4.3.3 tells us that w ∈ X .

• Suppose dsfxsw ⊆ {0, 1, 2}. Because 0 ∈ {−2,−1, 0} and dsfxsw ⊆ {0, 1, 2} = {0, 0+1, 0+2},

Lemma PS4.3.3 tells us that w ∈ X .

✷

For −2 ≤ n ≤ 0 ≤ m ≤ 2, define

Y n,m = {w ∈ {0, 1}∗ | dsfxsw ⊆ {n, . . . ,m} }.

Thus it is easy to show that:

• if v is a suffix of w ∈ Y n,m, then n ≤ diff v ≤ m;

• if w ∈ {0, 1}∗ and, for all suffixes v of w, n ≤ diff v ≤ m, then w ∈ Y n,m;

• % ∈ Y n,m.

The basis of the proof that L(M) = X is the following lemma:

Lemma PS4.3.5

(1) X = Y 0,2 ∪ Y −1,1 ∪ Y −2,0.

(2) Y 0,2 = {%} ∪ Y −1,1{1}.

(3) Y −1,1 = {%} ∪ Y 0,2{0} ∪ Y −2,0{1}.

(4) Y −2,0 = {%} ∪ Y −1,1{0}.

Proof.

(1) We show that X ⊆ Y 0,2 ∪ Y −1,1 ∪ Y −2,0 ⊆ X .

• To show X ⊆ Y 0,2 ∪ Y −1,1 ∪ Y −2,0, suppose w ∈ X . By Lemma PS4.3.2, we have that

either dsfxsw ⊆ {−2,−1, 0} or dsfxsw ⊆ {−1, 0, 1} or dsfxsw ⊆ {0, 1, 2}. Thus there

are three cases to consider.

6

– Suppose dsfxsw ⊆ {−2,−1, 0}. Thus w ∈ Y −2,0 ⊆ Y 0,2 ∪ Y −1,1 ∪ Y −2,0.

– Suppose dsfxsw ⊆ {−1, 0, 1}. Thus w ∈ Y −1,1 ⊆ Y 0,2 ∪ Y −1,1 ∪ Y −2,0.

– Suppose dsfxsw ⊆ {0, 1, 2}. Thus w ∈ Y 0,2 ⊆ Y 0,2 ∪ Y −1,1 ∪ Y −2,0.

• To show Y 0,2 ∪ Y −1,1 ∪ Y −2,0 ⊆ X , suppose w ∈ Y 0,2 ∪ Y −1,1 ∪ Y −2,0. There are three

cases to consider.

– Suppose w ∈ Y 0,2, so that dsfxsw ⊆ {0, 1, 2}. Thus w ∈ X , by Lemma PS4.3.4.

– Suppose w ∈ Y −1,1, so that dsfxsw ⊆ {−1, 0, 1}. Thus w ∈ X , by Lemma PS4.3.4.

– Suppose w ∈ Y −2,0, so that dsfxsw ⊆ {−2,−1, 0}. Thus w ∈ X , by Lemma PS4.3.4.

(2) We show that Y 0,2 ⊆ {%} ∪ Y −1,1{1} ⊆ Y 0,2.

• To show that Y 0,2 ⊆ {%} ∪ Y −1,1{1}, suppose w ∈ Y 0,2. If w = %, then w ∈ {%} ∪

Y −1,1{1}. So, suppose w 6= %. Then w = xa for some x ∈ {0, 1}∗ and a ∈ {0, 1}.

We cannot have a = 0, as then −1 ∈ dsfxsw (contradicting w ∈ Y 0,2). Thus a = 1,

so that w = x1. To see that x ∈ Y −1,1, suppose v is a suffix of x. Because v1 is a

suffix of w ∈ Y 0,2, we have that 0 ≤ diff(v1) ≤ 2. But diff(v1) = diff v + 1, and thus

−1 ≤ diff v ≤ 1. Thus w = x1 ∈ Y −1,1{1} ⊆ {%} ∪ Y −1,1{1}.

• To show that {%} ∪ Y −1,1{1} ⊆ Y 0,2, suppose w ∈ {%} ∪ Y −1,1{1}. If w ∈ {%}, then

w ∈ Y 0,2. Otherwise, we have that w ∈ Y −1,1{1}, so that w = x1, for some x ∈ Y −1,1.

To see that w ∈ Y 0,2, suppose v is a suffix of w = x1. We must show that 0 ≤ diff v ≤ 2.

If v = %, then this is true. Otherwise v = u1 for some suffix u of x. Because x ∈ Y −1,1,

we have that −1 ≤ diff u ≤ 1. Thus 0 ≤ diff v ≤ 2.

(3) We show that Y −1,1 ⊆ {%} ∪ Y 0,2{0} ∪ Y −2,0{1} ⊆ Y −1,1.

• To show that Y −1,1 ⊆ {%} ∪ Y 0,2{0} ∪ Y −2,0{1}, suppose w ∈ Y −1,1. If w = %, then

w ∈ {%} ∪ Y 0,2{0} ∪ Y −2,0{1}. So, suppose w 6= %. Then w = xa for some x ∈ {0, 1}∗

and a ∈ {0, 1}. There are two cases to consider.

– Suppose a = 0, so that w = x0. To see that x ∈ Y 0,2, suppose v is a suffix of

x. Because v0 is a suffix of w ∈ Y −1,1, we have that −1 ≤ diff(v0) ≤ 1. But

diff(v0) = diff v + −1, and thus 0 ≤ diff v ≤ 2. Thus w = x0 ∈ Y 0,2{0} ⊆

{%} ∪ Y 0,2{0} ∪ Y −2,0{1}.

– Suppose a = 1, so that w = x1. To see that x ∈ Y −2,0, suppose v is a suffix of

x. Because v1 is a suffix of w ∈ Y −1,1, we have that −1 ≤ diff(v1) ≤ 1. But

diff(v1) = diff v + 1, and thus −2 ≤ diff v ≤ 0. Thus w = x1 ∈ Y −2,0{1} ⊆

{%} ∪ Y 0,2{0} ∪ Y −2,0{1}.

• To show that {%}∪Y 0,2{0}∪Y −2,0{1} ⊆ Y −1,1, suppose w ∈ {%}∪Y 0,2{0}∪Y −2,0{1}.

If w ∈ {%}, then w ∈ Y −1,1. Otherwise, there are two cases to consider.

– Suppose w ∈ Y 0,2{0}, so that w = x0, for some x ∈ Y 0,2. To see that that w ∈ Y −1,1,

suppose v is a suffix of w = x0. We must show that −1 ≤ diff v ≤ 1. If v = %, then

this is true. Otherwise v = u0 for some suffix u of x. Because x ∈ Y 0,2, we have

that 0 ≤ diff u ≤ 2. Thus −1 ≤ diff v ≤ 1.

7

– Suppose w ∈ Y −2,0{1}, so that w = x1, for some x ∈ Y −2,0. To see that w ∈ Y −1,1,

suppose v is a suffix of w = x1. We must show that −1 ≤ diff v ≤ 1. If v = %, then

this is true. Otherwise v = u1 for some suffix u of x. Because x ∈ Y −2,0, we have

that −2 ≤ diff u ≤ 0. Thus −1 ≤ diff v ≤ 1.

(4) We show that Y −2,0 ⊆ {%} ∪ Y −1,1{0} ⊆ Y −2,0.

• To show that Y −2,0 ⊆ {%} ∪ Y −1,1{0}, suppose w ∈ Y −2,0. If w = %, then w ∈

{%} ∪ Y −1,1{0}. So, suppose w 6= %. Then w = xa for some x ∈ {0, 1}∗ and a ∈ {0, 1}.

We cannot have a = 1, as then 1 ∈ dsfxsw (contradicting w ∈ Y −2,0). Thus a = 0, so

that w = x0. To see that that x ∈ Y −1,1, suppose v is a suffix of x. Because v0 is a

suffix of w ∈ Y −2,0, we have that −2 ≤ diff(v0) ≤ 0. But diff(v0) = diff v + −1, and

thus −1 ≤ diff v ≤ 1. Thus w = x0 ∈ Y −1,1{0} ⊆ {%} ∪ Y −1,1{0}.

• To show that {%} ∪ Y −1,1{0} ⊆ Y −2,0, suppose w ∈ {%} ∪ Y −1,1{0}. If w ∈ {%},

then w ∈ Y −2,0. Otherwise, we have that w ∈ Y −1,1{0}, so that w = x0, for some

x ∈ Y −1,1. To see that w ∈ Y −2,0, suppose v is a suffix of w = x0. We must show that

−2 ≤ diff v ≤ 0. If v = %, then this is true. Otherwise v = u0 for some suffix u of x.

Because x ∈ Y −1,1, we have that −1 ≤ diff u ≤ 1. Thus −2 ≤ diff v ≤ 0.

✷

In what follows, we will show that ΛA = {%}, ΛB = Y 0,2, ΛC = Y −1,1 and ΛD = Y −2,0.

Lemma PS4.3.6

(A) For all w ∈ ΛA, w ∈ {%}.

(B) For all w ∈ ΛB, w ∈ Y 0,2.

(C) For all w ∈ ΛC, w ∈ Y −1,1.

(D) For all w ∈ ΛD, w ∈ Y −2,0.

Proof. We proceed by induction on Λ. There are 8 (1 plus the number of transitions) parts to

show.

(empty string) Clearly % ∈ {%}, as required.

(A,%→ B) Suppose w ∈ ΛA, and assume the inductive hypothesis: w ∈ {%}. We must show

that w% ∈ Y 0,2. And w% = %% = % ∈ Y 0,2.

(A,%→ C) Suppose w ∈ ΛA, and assume the inductive hypothesis: w ∈ {%}. We must show

that w% ∈ Y −1,1. And w% = %% = % ∈ Y −1,1.

(A,%→D) Suppose w ∈ ΛA, and assume the inductive hypothesis: w ∈ {%}. We must show

that w% ∈ Y −2,0. And w% = %% = % ∈ Y −2,0.

(B, 0→ C) Suppose w ∈ ΛB, and assume the inductive hypothesis: w ∈ Y 0,2. We must show that

w0 ∈ Y −1,1. And w0 ∈ Y 0,2{0} ⊆ Y −1,1, by Lemma PS4.3.5(3).

8

(C, 0→ D) Suppose w ∈ ΛC, and assume the inductive hypothesis: w ∈ Y −1,1. We must show

that w0 ∈ Y −2,0. And w0 ∈ Y −1,1{0} ⊆ Y −2,0, by Lemma PS4.3.5(4).

(C, 1→ B) Suppose w ∈ ΛC, and assume the inductive hypothesis: w ∈ Y −1,1. We must show

that w1 ∈ Y 0,2. And w1 ∈ Y −1,1{1} ⊆ Y 0,2, by Lemma PS4.3.5(2).

(D, 1→ C) Suppose w ∈ ΛD, and assume the inductive hypothesis: w ∈ Y −2,0. We must show

that w1 ∈ Y −1,1. And w1 ∈ Y −2,0{1} ⊆ Y −1,1, by Lemma PS4.3.5(3).

✷

Lemma PS4.3.7

For all w ∈ {0, 1}∗:

(A) if w ∈ {%}, then w ∈ ΛA;

(B) if w ∈ Y 0,2, then w ∈ ΛB;

(C) if w ∈ Y −1,1, then w ∈ ΛC;

(D) if w ∈ Y −2,0, then w ∈ ΛD.

Proof. We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume the inductive

hypothesis: for all x ∈ {0, 1}∗, if x is a proper substring of w, then

(A) if x ∈ {%}, then x ∈ ΛA;

(B) if x ∈ Y 0,2, then x ∈ ΛB;

(C) if x ∈ Y −1,1, then x ∈ ΛC;

(D) if x ∈ Y −2,0, then x ∈ ΛD.

We must show that

(A) if w ∈ {%}, then w ∈ ΛA;

(B) if w ∈ Y 0,2, then w ∈ ΛB;

(C) if w ∈ Y −1,1, then w ∈ ΛC;

(D) if w ∈ Y −2,0, then w ∈ ΛD.

There are four cases to consider.

(A) Suppose w ∈ {%}. We must show that w ∈ ΛA. Because A is M ’s start state, w = % ∈ ΛA.

(B) Suppose w ∈ Y 0,2. We must show that w ∈ ΛB. By Lemma PS4.3.5(2), we have that

w ∈ {%} ∪ Y −1,1{1}. Thus there are two subcases to consider.

• Suppose w ∈ {%}. Because A is M ’s start state, we have % ∈ ΛA. And since (A,%,B) ∈

TM , it follows that w = % = %% ∈ ΛB.

9

• Suppose w ∈ Y −1,1{1}, so that w = x1, for some x ∈ Y −1,1. Because x is a proper

substring of w, part (C) of the inductive hypothesis tells us that x ∈ ΛC. Thus w =

x1 ∈ ΛB, because of the transition (C, 1,B).

(C) Suppose w ∈ Y −1,1. We must show that w ∈ ΛC. By Lemma PS4.3.5(3), we have that

w ∈ {%} ∪ Y 0,2{0} ∪ Y −2,0{1}. Thus there are three subcases to consider.

• Suppose w ∈ {%}. Because A is M ’s start state, we have % ∈ ΛA. And since (A,%,C) ∈

TM , it follows that w = % = %% ∈ ΛC.

• Suppose w ∈ Y 0,2{0}, so that w = x0, for some x ∈ Y 0,2. Because x is a proper substring

of w, part (B) of the inductive hypothesis tells us that x ∈ ΛB. Thus w = x0 ∈ ΛC,

because of the transition (B, 0,C).

• Suppose w ∈ Y −2,0{1}, so that w = x1, for some x ∈ Y −2,0. Because x is a proper

substring of w, part (D) of the inductive hypothesis tells us that x ∈ ΛD. Thus w =

x1 ∈ ΛC, because of the transition (D, 1,C).

(D) Suppose w ∈ Y −2,0. We must show that w ∈ ΛD. By Lemma PS4.3.5(4), we have that

w ∈ {%} ∪ Y −1,1{0}. Thus there are two subcases to consider.

• Suppose w ∈ {%}. Because A is M ’s start state, we have % ∈ ΛA. And since (A,%,D) ∈

TM , it follows that w = % = %% ∈ ΛD.

• Suppose w ∈ Y −1,1{0}, so that w = x0, for some x ∈ Y −1,1. Because x is a proper

substring of w, part (C) of the inductive hypothesis tells us that x ∈ ΛC. Thus w =

x0 ∈ ΛD, because of the transition (C, 0,D).

✷

Lemma PS4.3.8

(A) ΛA = {%}.

(B) ΛB = Y 0,2.

(C) ΛC = Y −1,1.

(D) ΛD = Y −2,0.

Proof. Follows by Lemmas PS4.3.6 and PS4.3.7. ✷

Lemma PS4.3.9

L(M) = X .

Proof. Because M ’s set of accepting states is {B,C,D}, it follows that L(M) = ΛB∪ΛC∪ΛD. And

by Lemma PS4.3.8 and Lemma PS4.3.5(1), we have that ΛB ∪ΛC∪ΛD = Y 0,2 ∪Y −1,1 ∪Y −2,0 = X .

Thus L(M) = X . ✷

10

