CS 516—Software Foundations via Formal Languages—Spring 2022

Problem Set 4

Model Answers

Problem 1

(a) The finite automaton N is



(b) First, we put the expression of N in Forlan's syntax

```
{states} A, B, C {start state} A {accepting states} A, B, C
{transitions}
A, 0 -> B; A, 1 -> A;
B, 0 -> B; B, 1 -> C;
C, 1 -> A
```

in the file ps4-p1-fa (see the course website), and load this file into Forlan, calling the result fa:

```
- val fa = FA.input "ps4-p1-fa";
val fa = - : fa
```

Next we load the file ps4-p1.sml

```
(* val inX : str -> bool
   tests whether a string over the alphabet {0, 1} is in X *)
fun inX x =
      Set.all
      (fn y => not(Str.equal(y, Str.fromString "010")))
      (StrSet.substrings x);
(* val upto : int -> str set
   if n >= 0, then upto n returns all strings over alphabet {0, 1} of
   length no more than n *)
fun upto 0 : str set = Set.sing nil
```

```
| upto n
      let val xs = upto(n - 1)
          val ys = Set.filter (fn x => length x = n - 1) xs
      in StrSet.union
         (xs, StrSet.concat(StrSet.fromString "0, 1", ys))
      end:
(* val partition : int -> str set * str set
   if n \ge 0, then partition n returns (xs, ys) where:
   xs is all elements of upto n that are in X; and
   ys is all elements of upto n that are not in X *)
fun partition n = Set.partition inX (upto n);
(* val test = fn : int -> fa -> str option * str option
   if n \ge 0, then test n returns a function f such that, for all FAs
   fa, f fa returns a pair (xOpt, yOpt) such that:
     If there is an element of \{0, 1\}* of length no more than n that
     is in X but is not accepted by fa, then xOpt = SOME x for some
     such x; otherwise, xOpt = NONE.
     If there is an element of \{0, 1\}* of length no more than n that
     is not in X but is accepted by fa, then yOpt = SOME y for some
     such y; otherwise, yOpt = NONE. *)
fun test n =
      let val (goods, bads) = partition n
      in fn fa =>
              let val accepted
                                    = FA.accepted fa
                  val goodNotAccOpt = Set.position (not o accepted) goods
                                   = Set.position accepted bads
                  val badAccOpt
              in ((case goodNotAccOpt of
                        NONE => NONE
                      | SOME i => SOME(ListAux.sub(Set.toList goods, i))),
                  (case badAccOpt of
                        NONE => NONE
                      SOME i => SOME(ListAux.sub(Set.toList bads, i))))
              end
      end;
```

(see the course website) defining the function test into Forlan:

```
- use "ps4-p1.sml";
[opening ps4-p1.sml]
```

```
val inX = fn : str -> bool
val upto = fn : int -> str set
val partition = fn : int -> str set * str set
val test = fn : int -> fa -> str option * str option
val it = () : unit
```

Finally, we apply test to arguments 10 and fa:

```
- test 10 fa;
val it = (NONE,NONE) : str option * str option
```

Problem 2

(a) First, we load the file ps4-p2-fa (see the course website) containing the expression

```
{states} A, B, C, D {start state} A {accepting states} B, C, D
{transitions}
A, % -> B | C | D;
B, 0 -> C;
C, 0 -> D; C, 1 -> B;
D, 1 -> C
```

of M in Forlan's syntax into Forlan, calling the result fa:

```
- val fa = FA.input "ps4-p2-fa";
val fa = - : fa
```

Next, we define a function accPr that finds and prints a labeled path in fa explaining why a Forlan string expressed as an SML string is accepted:

```
- fun accPr s =
= LP.output("", FA.findAcceptingLP fa (Str.fromString s));
val accPr = fn : string -> unit
```

Finally, we use this function to find and display the required labeled paths:

```
- accPr "0010110";
A, % => B, 0 => C, 0 => D, 1 => C, 0 => D, 1 => C, 1 => B, 0 => C
val it = () : unit
- accPr "1001101";
A, % => C, 1 => B, 0 => C, 0 => D, 1 => C, 1 => B, 0 => C, 1 => B
val it = () : unit
- accPr "1011001";
A, % => D, 1 => C, 0 => D, 1 => C, 1 => B, 0 => C, 0 => D, 1 => C
val it = () : unit
```

(b) Continuing our Forlan session, we first load the file ps4-p2.sml

```
fun accLen n =
    Set.filter
    (FA.accepted fa)
    (StrSet.power(StrSet.fromString "0,1", n));
```

(see the course website) defining the function accLen into Forlan:

```
- use "ps4-p2.sml";
[opening ps4-p2.sml]
val accLen = fn : int -> str set
val it = () : unit
```

Then we apply it to 10, calling the resulting set of labeled paths lps, compute the size of lps, and display its elements:

```
- val lps = accLen 10;
val lps = - : str set
- Set.size lps;
val it = 94 : int
- StrSet.output("", lps);
0010101010, 0010101011, 0010101100, 0010101101, 0010110010, 0010110011,
0011010010, 0011010011, 0011010100, 0011010101, 0100101010, 0100101011,
0101001010, 0101001011, 0101001100, 0101001101, 0101010010, 0101010011,
0101010100, 0101010101, 010101010, 0101011001, 0101011010, 0101100101,
1010110010, 1010110011, 1010110100, 1010110101, 1011001010, 1011001011,
1011001100, 1011001101, 1011010010, 1011010011, 1011010100, 1011010101,
1100110100, 1100110101, 1101001010, 1101001011, 1101001100, 1101001101,
val it = () : unit
```

Problem 3

Define a function **dsfxs** (for "diffs of suffixes") from $\{0,1\}^*$ to $\mathcal{P}\mathbb{Z}$ by: for all $w \in \{0,1\}^*$,

 $\mathbf{dsfxs}\,w = \{\,\mathbf{diff}\,v \mid v \text{ is a suffix of } w\,\}.$

From the definitions of X and **dsfxs** and the fact that suffixes are substrings, we have that, if $w \in X$, then **dsfxs** $w \subseteq \{-2, -1, 0, 1, 2\}$. It turns out, though, that we can characterize membership in X using **dsfxs**.

Lemma PS4.3.1

For all $w \in X$ and $n, m \in \operatorname{dsfxs} w, -2 \le m - n \le 2$.

Proof. Suppose $w \in X$ and $n, m \in \mathbf{dsfxs} w$, so that there are suffixes u and v of w such that $n = \mathbf{diff} u$ and $m = \mathbf{diff} v$. Because u and v are suffixes of w, one must be a suffix of the other, and so there are two cases to consider.

- Suppose u is a suffix of v. Thus v = zu for some $z \in \{0, 1\}^*$, and thus z is a substring of w. Hence $m = \operatorname{diff} v = \operatorname{diff} z + \operatorname{diff} u = \operatorname{diff} z + n$, so that $m n = \operatorname{diff} z$. Because z is a substring of $w \in X$, we have that $-2 \leq \operatorname{diff} z \leq 2$, and thus $-2 \leq m n \leq 2$.
- Suppose v is a suffix of u. Thus u = zv for some $z \in \{0,1\}^*$, and thus z is a substring of w. Hence $n = \operatorname{diff} u = \operatorname{diff} z + \operatorname{diff} v = \operatorname{diff} z + m$, so that $n m = \operatorname{diff} z$. Because z is a substring of $w \in X$, we have that $-2 \leq \operatorname{diff} z \leq 2$, and thus $-2 \leq n m \leq 2$. Since $-2 \leq n m$, we have that $m n = -(n m) \leq -(-2) = 2$. And since $n m \leq 2$, we have that $-2 \leq -(n m) = m n$. Thus $-2 \leq m n \leq 2$.

Lemma PS4.3.2

For all $w \in X$, either dsfxs $w \subseteq \{-2, -1, 0\}$ or dsfxs $w \subseteq \{-1, 0, 1\}$ or dsfxs $w \subseteq \{0, 1, 2\}$.

Proof. Suppose $w \in X$. Thus $\operatorname{dsfxs} w \subseteq \{-2, -1, 0, 1, 2\}$. Because % is a suffix of w, we have that $0 = \operatorname{diff} \% \in \operatorname{dsfxs} w$. There are two cases to consider.

- Suppose $-2 \in \mathbf{dsfxs} w$. Lemma PS4.3.1 tells us that neither 1 nor 2 are elements of $\mathbf{dsfxs} w$, since -2 1 = -3 and -2 2 = -4 are both < -2. Thus $\mathbf{dsfxs} w \subseteq \{-2, -1, 0\}$, so that either $\mathbf{dsfxs} w \subseteq \{-2, -1, 0\}$ or $\mathbf{dsfxs} w \subseteq \{-1, 0, 1\}$ or $\mathbf{dsfxs} w \subseteq \{0, 1, 2\}$.
- Suppose $-2 \notin \mathbf{dsfxs} w$. Then $\mathbf{dsfxs} w \subseteq \{-1, 0, 1, 2\}$. There are two subcases to consider.
 - Suppose $2 \in \mathbf{dsfxs} w$. Then Lemma PS4.3.1 tells us that -1 is not an element of $\mathbf{dsfxs} w$, since 2 (-1) = 3 is > 2. Thus $\mathbf{dsfxs} w \subseteq \{0, 1, 2\}$, so that either $\mathbf{dsfxs} w \subseteq \{-2, -1, 0\}$ or $\mathbf{dsfxs} w \subseteq \{-1, 0, 1\}$ or $\mathbf{dsfxs} w \subseteq \{0, 1, 2\}$.
 - Suppose $2 \notin \mathbf{dsfxs} w$. Then $\mathbf{dsfxs} w \subseteq \{-1, 0, -1\}$, so that either $\mathbf{dsfxs} w \subseteq \{-2, -1, 0\}$ or $\mathbf{dsfxs} w \subseteq \{-1, 0, 1\}$ or $\mathbf{dsfxs} w \subseteq \{0, 1, 2\}$.

Lemma PS4.3.3

For all $w \in \{0, 1\}^*$ and $n \in \{-2, -1, 0\}$, if dsfxs $w \subseteq \{n, n+1, n+2\}$, then $w \in X$.

Proof. Suppose $w \in \{0,1\}^*$, $n \in \{-2,-1,0\}$ and $\operatorname{dsfxs} w \subseteq \{n,n+1,n+2\}$. To show that $w \in X$, suppose v is a substring of w. Thus w = xvy for some $x, y \in \{0,1\}^*$. We must show that $-2 \leq \operatorname{diff} v \leq 2$. Because y is a suffix of w, $\operatorname{diff} y \in \operatorname{dsfxs} w$, and thus $n \leq \operatorname{diff} y \leq n+2$. Because vy is a suffix of w, $\operatorname{diff}(vy) \in \operatorname{dsfxs} w$, and thus $n \leq \operatorname{diff}(vy) \leq n+2$. And since $\operatorname{diff}(vy) = \operatorname{diff} v + \operatorname{diff} y = \operatorname{diff} v$, it follows that $n \leq \operatorname{diff} v \leq n+2$.

Suppose, toward a contradiction, that $-2 \leq \text{diff } v \leq 2$ is false. Thus there are two cases to consider.

- Suppose diff $v \le -3$. Because diff $y \le n+2$, it follows that $n \le \text{diff } y + \text{diff } v \le (n+2) + -3 = n-1$, so that $n \le n-1$ —contradiction.
- Suppose $3 \leq \text{diff } v$. Because $n \leq \text{diff } y$, it follows that $n+3 \leq \text{diff } y + \text{diff } v \leq n+2$, so that $3 \leq 2$ —contradiction.

Because we obtained a contradiction in both cases, we have an overall contradiction. Thus $-2 \leq \text{diff } v \leq 2$, completing the proof that $w \in X$. \Box

Lemma PS4.3.4

For all $w \in \{0,1\}^*$, if either $dsfxs w \subseteq \{-2,-1,0\}$ or $dsfxs w \subseteq \{-1,0,1\}$ or $dsfxs w \subseteq \{0,1,2\}$, then $w \in X$.

Proof. Suppose $w \in \{0, 1\}^*$ and assume that either $\operatorname{dsfxs} w \subseteq \{-2, -1, 0\}$ or $\operatorname{dsfxs} w \subseteq \{-1, 0, 1\}$ or $\operatorname{dsfxs} w \subseteq \{0, 1, 2\}$. There are three case to consider.

- Suppose $\operatorname{dsfxs} w \subseteq \{-2, -1, 0\}$. Because $-2 \in \{-2, -1, 0\}$ and $\operatorname{dsfxs} w \subseteq \{-2, -1, 0\} = \{-2, (-2) + 1, (-2) + 2\}$, Lemma PS4.3.3 tells us that $w \in X$.
- Suppose $\operatorname{dsfxs} w \subseteq \{-1, 0, 1\}$. Because $-1 \in \{-2, -1, 0\}$ and $\operatorname{dsfxs} w \subseteq \{-1, 0, 1\} = \{-1, (-1) + 1, (-1) + 2\}$, Lemma PS4.3.3 tells us that $w \in X$.
- Suppose $dsfxs w \subseteq \{0, 1, 2\}$. Because $0 \in \{-2, -1, 0\}$ and $dsfxs w \subseteq \{0, 1, 2\} = \{0, 0+1, 0+2\}$, Lemma PS4.3.3 tells us that $w \in X$.

For $-2 \le n \le 0 \le m \le 2$, define

$$Y^{n,m} = \{ w \in \{0,1\}^* \mid \mathbf{dsfxs} \, w \subseteq \{n,\ldots,m\} \}.$$

Thus it is easy to show that:

- if v is a suffix of $w \in Y^{n,m}$, then $n \leq \operatorname{diff} v \leq m$;
- if $w \in \{0,1\}^*$ and, for all suffixes v of $w, n \leq \text{diff } v \leq m$, then $w \in Y^{n,m}$;
- $\% \in Y^{n,m}$.

The basis of the proof that L(M) = X is the following lemma:

Lemma PS4.3.5

- (1) $X = Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$.
- (2) $Y^{0,2} = \{\%\} \cup Y^{-1,1}\{1\}.$
- (3) $Y^{-1,1} = \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}.$
- (4) $Y^{-2,0} = \{\%\} \cup Y^{-1,1}\{0\}.$

Proof.

- (1) We show that $X \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0} \subseteq X$.
 - To show $X \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$, suppose $w \in X$. By Lemma PS4.3.2, we have that either dsfxs $w \subseteq \{-2, -1, 0\}$ or dsfxs $w \subseteq \{-1, 0, 1\}$ or dsfxs $w \subseteq \{0, 1, 2\}$. Thus there are three cases to consider.

- Suppose dsfxs $w \subseteq \{-2, -1, 0\}$. Thus $w \in Y^{-2,0} \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$.
- Suppose dsfxs $w \subseteq \{-1, 0, 1\}$. Thus $w \in Y^{-1,1} \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$.
- Suppose dsfxs $w \subseteq \{0, 1, 2\}$. Thus $w \in Y^{0,2} \subseteq Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$.
- To show $Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0} \subseteq X$, suppose $w \in Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0}$. There are three cases to consider.
 - Suppose $w \in Y^{0,2}$, so that $\operatorname{dsfxs} w \subseteq \{0, 1, 2\}$. Thus $w \in X$, by Lemma PS4.3.4.
 - Suppose $w \in Y^{-1,1}$, so that $\operatorname{dsfxs} w \subseteq \{-1, 0, 1\}$. Thus $w \in X$, by Lemma PS4.3.4.
 - Suppose $w \in Y^{-2,0}$, so that dsfxs $w \subseteq \{-2, -1, 0\}$. Thus $w \in X$, by Lemma PS4.3.4.
- (2) We show that $Y^{0,2} \subseteq \{\%\} \cup Y^{-1,1}\{1\} \subseteq Y^{0,2}$.
 - To show that $Y^{0,2} \subseteq \{\%\} \cup Y^{-1,1}\{1\}$, suppose $w \in Y^{0,2}$. If w = %, then $w \in \{\%\} \cup Y^{-1,1}\{1\}$. So, suppose $w \neq \%$. Then w = xa for some $x \in \{0,1\}^*$ and $a \in \{0,1\}$. We cannot have a = 0, as then $-1 \in \operatorname{dsfxs} w$ (contradicting $w \in Y^{0,2}$). Thus a = 1, so that w = x1. To see that $x \in Y^{-1,1}$, suppose v is a suffix of x. Because v1 is a suffix of $w \in Y^{0,2}$, we have that $0 \leq \operatorname{diff}(v1) \leq 2$. But $\operatorname{diff}(v1) = \operatorname{diff} v + 1$, and thus $-1 \leq \operatorname{diff} v \leq 1$. Thus $w = x1 \in Y^{-1,1}\{1\} \subseteq \{\%\} \cup Y^{-1,1}\{1\}$.
 - To show that $\{\%\} \cup Y^{-1,1}\{1\} \subseteq Y^{0,2}$, suppose $w \in \{\%\} \cup Y^{-1,1}\{1\}$. If $w \in \{\%\}$, then $w \in Y^{0,2}$. Otherwise, we have that $w \in Y^{-1,1}\{1\}$, so that w = x1, for some $x \in Y^{-1,1}$. To see that $w \in Y^{0,2}$, suppose v is a suffix of w = x1. We must show that $0 \leq \operatorname{diff} v \leq 2$. If v = %, then this is true. Otherwise v = u1 for some suffix u of x. Because $x \in Y^{-1,1}$, we have that $-1 \leq \operatorname{diff} u \leq 1$. Thus $0 \leq \operatorname{diff} v \leq 2$.
- (3) We show that $Y^{-1,1} \subseteq \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\} \subseteq Y^{-1,1}$.
 - To show that $Y^{-1,1} \subseteq \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$, suppose $w \in Y^{-1,1}$. If w = %, then $w \in \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$. So, suppose $w \neq \%$. Then w = xa for some $x \in \{0,1\}^*$ and $a \in \{0,1\}$. There are two cases to consider.
 - Suppose a = 0, so that w = x0. To see that $x \in Y^{0,2}$, suppose v is a suffix of x. Because v0 is a suffix of $w \in Y^{-1,1}$, we have that $-1 \leq \operatorname{diff}(v0) \leq 1$. But $\operatorname{diff}(v0) = \operatorname{diff} v + -1$, and thus $0 \leq \operatorname{diff} v \leq 2$. Thus $w = x0 \in Y^{0,2}\{0\} \subseteq \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$.
 - Suppose a = 1, so that w = x1. To see that $x \in Y^{-2,0}$, suppose v is a suffix of x. Because v1 is a suffix of $w \in Y^{-1,1}$, we have that $-1 \leq \operatorname{diff}(v1) \leq 1$. But $\operatorname{diff}(v1) = \operatorname{diff} v + 1$, and thus $-2 \leq \operatorname{diff} v \leq 0$. Thus $w = x1 \in Y^{-2,0}\{1\} \subseteq \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$.
 - To show that $\{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\} \subseteq Y^{-1,1}$, suppose $w \in \{\%\} \cup Y^{0,2}\{0\} \cup Y^{-2,0}\{1\}$. If $w \in \{\%\}$, then $w \in Y^{-1,1}$. Otherwise, there are two cases to consider.
 - Suppose $w \in Y^{0,2}\{0\}$, so that w = x0, for some $x \in Y^{0,2}$. To see that that $w \in Y^{-1,1}$, suppose v is a suffix of w = x0. We must show that $-1 \leq \text{diff } v \leq 1$. If v = %, then this is true. Otherwise v = u0 for some suffix u of x. Because $x \in Y^{0,2}$, we have that $0 \leq \text{diff } u \leq 2$. Thus $-1 \leq \text{diff } v \leq 1$.

- Suppose $w \in Y^{-2,0}\{1\}$, so that w = x1, for some $x \in Y^{-2,0}$. To see that $w \in Y^{-1,1}$, suppose v is a suffix of w = x1. We must show that $-1 \leq \operatorname{diff} v \leq 1$. If v = %, then this is true. Otherwise v = u1 for some suffix u of x. Because $x \in Y^{-2,0}$, we have that $-2 \leq \operatorname{diff} u \leq 0$. Thus $-1 \leq \operatorname{diff} v \leq 1$.
- (4) We show that $Y^{-2,0} \subseteq \{\%\} \cup Y^{-1,1}\{0\} \subseteq Y^{-2,0}$.
 - To show that $Y^{-2,0} \subseteq \{\%\} \cup Y^{-1,1}\{0\}$, suppose $w \in Y^{-2,0}$. If w = %, then $w \in \{\%\} \cup Y^{-1,1}\{0\}$. So, suppose $w \neq \%$. Then w = xa for some $x \in \{0,1\}^*$ and $a \in \{0,1\}$. We cannot have a = 1, as then $1 \in \operatorname{dsfxs} w$ (contradicting $w \in Y^{-2,0}$). Thus a = 0, so that w = x0. To see that that $x \in Y^{-1,1}$, suppose v is a suffix of x. Because v0 is a suffix of $w \in Y^{-2,0}$, we have that $-2 \leq \operatorname{diff}(v0) \leq 0$. But $\operatorname{diff}(v0) = \operatorname{diff} v + -1$, and thus $-1 \leq \operatorname{diff} v \leq 1$. Thus $w = x0 \in Y^{-1,1}\{0\} \subseteq \{\%\} \cup Y^{-1,1}\{0\}$.
 - To show that $\{\%\} \cup Y^{-1,1}\{0\} \subseteq Y^{-2,0}$, suppose $w \in \{\%\} \cup Y^{-1,1}\{0\}$. If $w \in \{\%\}$, then $w \in Y^{-2,0}$. Otherwise, we have that $w \in Y^{-1,1}\{0\}$, so that w = x0, for some $x \in Y^{-1,1}$. To see that $w \in Y^{-2,0}$, suppose v is a suffix of w = x0. We must show that $-2 \leq \operatorname{diff} v \leq 0$. If v = %, then this is true. Otherwise v = u0 for some suffix u of x. Because $x \in Y^{-1,1}$, we have that $-1 \leq \operatorname{diff} u \leq 1$. Thus $-2 \leq \operatorname{diff} v \leq 0$.

In what follows, we will show that $\Lambda_{\mathsf{A}} = \{\%\}$, $\Lambda_{\mathsf{B}} = Y^{0,2}$, $\Lambda_{\mathsf{C}} = Y^{-1,1}$ and $\Lambda_{\mathsf{D}} = Y^{-2,0}$.

Lemma PS4.3.6

- (A) For all $w \in \Lambda_A$, $w \in \{\%\}$.
- (B) For all $w \in \Lambda_{\mathsf{B}}, w \in Y^{0,2}$.
- (C) For all $w \in \Lambda_{\mathsf{C}}, w \in Y^{-1,1}$.
- (D) For all $w \in \Lambda_{\mathsf{D}}, w \in Y^{-2,0}$.

Proof. We proceed by induction on Λ . There are 8 (1 plus the number of transitions) parts to show.

(empty string) Clearly $\% \in \{\%\}$, as required.

- $(\mathsf{A}, \% \to \mathsf{B})$ Suppose $w \in \Lambda_\mathsf{A}$, and assume the inductive hypothesis: $w \in \{\%\}$. We must show that $w\% \in Y^{0,2}$. And $w\% = \%\% = \% \in Y^{0,2}$.
- $(\mathsf{A}, \% \to \mathsf{C})$ Suppose $w \in \Lambda_\mathsf{A}$, and assume the inductive hypothesis: $w \in \{\%\}$. We must show that $w\% \in Y^{-1,1}$. And $w\% = \%\% = \% \in Y^{-1,1}$.
- $(A, \% \to D)$ Suppose $w \in \Lambda_A$, and assume the inductive hypothesis: $w \in \{\%\}$. We must show that $w\% \in Y^{-2,0}$. And $w\% = \%\% = \% \in Y^{-2,0}$.
- $(\mathsf{B}, \mathsf{0} \to \mathsf{C})$ Suppose $w \in \Lambda_{\mathsf{B}}$, and assume the inductive hypothesis: $w \in Y^{0,2}$. We must show that $w\mathsf{0} \in Y^{-1,1}$. And $w\mathsf{0} \in Y^{0,2}\{\mathsf{0}\} \subseteq Y^{-1,1}$, by Lemma PS4.3.5(3).

- $(\mathsf{C}, \mathsf{0} \to \mathsf{D})$ Suppose $w \in \Lambda_{\mathsf{C}}$, and assume the inductive hypothesis: $w \in Y^{-1,1}$. We must show that $w\mathsf{0} \in Y^{-2,0}$. And $w\mathsf{0} \in Y^{-1,1}\{\mathsf{0}\} \subseteq Y^{-2,0}$, by Lemma PS4.3.5(4).
- $(\mathsf{C}, 1 \to \mathsf{B})$ Suppose $w \in \Lambda_{\mathsf{C}}$, and assume the inductive hypothesis: $w \in Y^{-1,1}$. We must show that $w1 \in Y^{0,2}$. And $w1 \in Y^{-1,1}\{1\} \subseteq Y^{0,2}$, by Lemma PS4.3.5(2).
- $(\mathsf{D}, 1 \to \mathsf{C})$ Suppose $w \in \Lambda_{\mathsf{D}}$, and assume the inductive hypothesis: $w \in Y^{-2,0}$. We must show that $w1 \in Y^{-1,1}$. And $w1 \in Y^{-2,0}\{1\} \subseteq Y^{-1,1}$, by Lemma PS4.3.5(3).

Lemma PS4.3.7

For all $w \in \{0, 1\}^*$:

- (A) if $w \in \{\%\}$, then $w \in \Lambda_A$;
- (B) if $w \in Y^{0,2}$, then $w \in \Lambda_{\mathsf{B}}$;
- (C) if $w \in Y^{-1,1}$, then $w \in \Lambda_{\mathsf{C}}$;
- (D) if $w \in Y^{-2,0}$, then $w \in \Lambda_{\mathsf{D}}$.

Proof. We proceed by strong string induction. Suppose $w \in \{0, 1\}^*$, and assume the inductive hypothesis: for all $x \in \{0, 1\}^*$, if x is a proper substring of w, then

- (A) if $x \in \{\%\}$, then $x \in \Lambda_A$;
- (B) if $x \in Y^{0,2}$, then $x \in \Lambda_{\mathsf{B}}$;
- (C) if $x \in Y^{-1,1}$, then $x \in \Lambda_{\mathsf{C}}$;
- (D) if $x \in Y^{-2,0}$, then $x \in \Lambda_{\mathsf{D}}$.

We must show that

- (A) if $w \in \{\%\}$, then $w \in \Lambda_A$;
- (B) if $w \in Y^{0,2}$, then $w \in \Lambda_{\mathsf{B}}$;
- (C) if $w \in Y^{-1,1}$, then $w \in \Lambda_{\mathsf{C}}$;
- (D) if $w \in Y^{-2,0}$, then $w \in \Lambda_{\mathsf{D}}$.

There are four cases to consider.

- (A) Suppose $w \in \{\%\}$. We must show that $w \in \Lambda_A$. Because A is M's start state, $w = \% \in \Lambda_A$.
- (B) Suppose $w \in Y^{0,2}$. We must show that $w \in \Lambda_{\mathsf{B}}$. By Lemma PS4.3.5(2), we have that $w \in \{\%\} \cup Y^{-1,1}\{1\}$. Thus there are two subcases to consider.
 - Suppose $w \in \{\%\}$. Because A is M's start state, we have $\% \in \Lambda_A$. And since $(A, \%, B) \in T_M$, it follows that $w = \% = \%\% \in \Lambda_B$.

- Suppose $w \in Y^{-1,1}\{1\}$, so that w = x1, for some $x \in Y^{-1,1}$. Because x is a proper substring of w, part (C) of the inductive hypothesis tells us that $x \in \Lambda_{\mathsf{C}}$. Thus $w = x1 \in \Lambda_{\mathsf{B}}$, because of the transition (C, 1, B).
- (C) Suppose $w \in Y^{-1,1}$. We must show that $w \in \Lambda_{\mathsf{C}}$. By Lemma PS4.3.5(3), we have that $w \in \{\%\} \cup Y^{0,2}\{\mathsf{0}\} \cup Y^{-2,0}\{\mathsf{1}\}$. Thus there are three subcases to consider.
 - Suppose $w \in \{\%\}$. Because A is M's start state, we have $\% \in \Lambda_A$. And since $(A, \%, C) \in T_M$, it follows that $w = \% = \%\% \in \Lambda_C$.
 - Suppose w ∈ Y^{0,2}{0}, so that w = x0, for some x ∈ Y^{0,2}. Because x is a proper substring of w, part (B) of the inductive hypothesis tells us that x ∈ Λ_B. Thus w = x0 ∈ Λ_C, because of the transition (B, 0, C).
 - Suppose $w \in Y^{-2,0}\{1\}$, so that w = x1, for some $x \in Y^{-2,0}$. Because x is a proper substring of w, part (D) of the inductive hypothesis tells us that $x \in \Lambda_{\mathsf{D}}$. Thus $w = x1 \in \Lambda_{\mathsf{C}}$, because of the transition $(\mathsf{D}, \mathsf{1}, \mathsf{C})$.
- (D) Suppose $w \in Y^{-2,0}$. We must show that $w \in \Lambda_{\mathsf{D}}$. By Lemma PS4.3.5(4), we have that $w \in \{\%\} \cup Y^{-1,1}\{0\}$. Thus there are two subcases to consider.
 - Suppose $w \in \{\%\}$. Because A is M's start state, we have $\% \in \Lambda_A$. And since $(A, \%, D) \in T_M$, it follows that $w = \% = \%\% \in \Lambda_D$.
 - Suppose w ∈ Y^{-1,1}{0}, so that w = x0, for some x ∈ Y^{-1,1}. Because x is a proper substring of w, part (C) of the inductive hypothesis tells us that x ∈ Λ_C. Thus w = x0 ∈ Λ_D, because of the transition (C, 0, D).

Lemma PS4.3.8

- (A) $\Lambda_{\mathsf{A}} = \{\%\}.$
- (B) $\Lambda_{\mathsf{B}} = Y^{0,2}$.
- (C) $\Lambda_{\mathsf{C}} = Y^{-1,1}$.
- (D) $\Lambda_{\mathsf{D}} = Y^{-2,0}$.

Proof. Follows by Lemmas PS4.3.6 and PS4.3.7. \Box

Lemma PS4.3.9 L(M) = X.

Proof. Because *M*'s set of accepting states is $\{B, C, D\}$, it follows that $L(M) = \Lambda_B \cup \Lambda_C \cup \Lambda_D$. And by Lemma PS4.3.8 and Lemma PS4.3.5(1), we have that $\Lambda_B \cup \Lambda_C \cup \Lambda_D = Y^{0,2} \cup Y^{-1,1} \cup Y^{-2,0} = X$. Thus L(M) = X. \Box