CS 516—Software Foundations via Formal Languages—Spring 2025

Final Examination

Tuesday, May 6, 12noon-2pm

Question 1 (20 points)

Suppose we know that $i, i', j, j', k, k' \in \mathbb{N}$ and

$$0^i 1^j 0^k = 0^{i'} 1^{j'} 0^{k'}.$$

What can we conclude about the relationship between i, j, k and i', j', k'? (You don't need to prove that your answer is correct.)

Question 2 (20 points)

Let $X = \{ 0^i 1^j 2^k \mid i, j, k \in \mathbb{N} \text{ and } 0 < i + j < k \}$. Find a grammar G such that L(G) = X.

Question 3 (20 points)

Given $w \in \{0, 1\}^*$, we write:

- **zeros** w for the number of occurrences of **0** in w; and
- ones w for the number of occurrences of 1 in w.

Define the following languages:

 $X_{ee} = \{ w \in \{0,1\}^* \mid \mathbf{zeros} \ w \text{ is even and ones } w \text{ is even } \},$ $X_{eo} = \{ w \in \{0,1\}^* \mid \mathbf{zeros} \ w \text{ is even and ones } w \text{ is odd } \},$ $X_{oe} = \{ w \in \{0,1\}^* \mid \mathbf{zeros} \ w \text{ is odd and ones } w \text{ is even } \},$ $X_{oo} = \{ w \in \{0,1\}^* \mid \mathbf{zeros} \ w \text{ is odd and ones } w \text{ is odd } \}.$

Assume that we have already proven the following facts: (1) $\% \in X_{ee}$; (2) $X_{ee}\{0\} \subseteq X_{oe}$; (3) $X_{ee}\{1\} \subseteq X_{eo}$; (4) $X_{eo}\{0\} \subseteq X_{oo}$; (5) $X_{eo}\{1\} \subseteq X_{ee}$; (6) $X_{oe}\{0\} \subseteq X_{ee}$; (7) $X_{oe}\{1\} \subseteq X_{oo}$; (8) $X_{oo}\{0\} \subseteq X_{eo}$; and (9) $X_{oo}\{1\} \subseteq X_{oe}$.

Find a DFA M such that $L(M) = X_{eo} \cup X_{oe}$, and prove that your answer is correct, explicitly making use of the above facts.

(continued on next page)

Question 4 (20 points)

Let the language X be

$$\{ \mathbf{0}^{i}\mathbf{1}^{j}\mathbf{2}^{k}\mathbf{3}^{l} \mid i, j, k, l \in \mathbb{N} \text{ and } i+j=k+l \text{ and} \\ i \text{ is even and } j \text{ is odd and } k \text{ is even and } l \text{ is odd } \}.$$

Prove that X is not regular.

Question 5 (20 points)

Suppose α and β are regular expressions whose alphabets are subsets of $\{0, 1\}$. Let

 $X = \{ w \in \{0,1\}^* \mid \text{for all } x, y \in \{0,1\}^*, \text{ if } w = xy, \text{ then, if } x \in L(\alpha), \text{ then } y \notin L(\beta) \}.$

Explain how we can use the algorithms we've studied to create a regular expression γ such that $L(\gamma) = X$. (You don't need to worry about making γ small.)