CS 516—Software Foundations via Formal Languages—Spring 2025

Final Examination

Model Answers

Question 1

We can conclude that:

- if j = 0, then j' = 0 and i + k = i' + k'; and
- if $j \ge 1$, then i = i', j = j' and k = k'.

Question 2

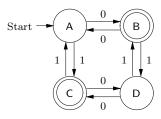
$$A \rightarrow 0B2 \mid 1C2$$
,

$$B \rightarrow 0B2 \mid C$$

$$C \rightarrow 1C2 \mid C2 \mid 2$$

Question 3

M is



First, we show by induction on Λ that:

- (A) for all $w \in \Lambda_A$, $w \in X_{ee}$;
- (B) for all $w \in \Lambda_B$, $w \in X_{oe}$;
- (C) for all $w \in \Lambda_{\mathsf{C}}$, $w \in X_{\mathsf{eo}}$;
- (D) for all $w \in \Lambda_D$, $w \in X_{oo}$.

There are nine (one plus the number of transitions) parts to show:

- (empty string) We must show that $\% \in X_{ee}$, and this follows by fact (1).
- $(A, 0 \to B)$ Suppose $w \in \Lambda_A$, and assume the inductive hypothesis, $w \in X_{ee}$. Then $w0 \in X_{ee}\{0\} \subseteq X_{oe}$, by fact (2).
- (A, 1 \rightarrow C) Suppose $w \in \Lambda_A$, and assume the inductive hypothesis, $w \in X_{ee}$. Then $w1 \in X_{ee}\{1\} \subseteq X_{eo}$, by fact (3).
- (B, 0 \rightarrow A) Suppose $w \in \Lambda_B$, and assume the inductive hypothesis, $w \in X_{oe}$. Then $w0 \in X_{oe}\{0\} \subseteq X_{ee}$, by fact (6).
- (B,1 \rightarrow D) Suppose $w \in \Lambda_B$, and assume the inductive hypothesis, $w \in X_{oe}$. Then $w1 \in X_{oe}\{1\} \subseteq X_{oo}$, by fact (7).
- $(C, 0 \to D)$ Suppose $w \in \Lambda_C$, and assume the inductive hypothesis, $w \in X_{eo}$. Then $w0 \in X_{eo}\{0\} \subseteq X_{oo}$, by fact (4).
- $(C, 1 \to A)$ Suppose $w \in \Lambda_C$, and assume the inductive hypothesis, $w \in X_{eo}$. Then $w1 \in X_{eo}\{1\} \subseteq X_{ee}$, by fact (5).
- (D, 0 \rightarrow C) Suppose $w \in \Lambda_D$, and assume the inductive hypothesis, $w \in X_{oo}$. Then $w0 \in X_{oo}\{0\} \subseteq X_{eo}$, by fact (8).
- $(D, 1 \to B)$ Suppose $w \in \Lambda_D$, and assume the inductive hypothesis, $w \in X_{oo}$. Then $w1 \in X_{oo}\{1\} \subseteq X_{oe}$, by fact (9).

Now we use the result of our induction on Λ to show that $L(M) = X_{eo} \cup X_{oe}$. $(L(M) \subseteq X_{eo} \cup X_{oe})$ Suppose $w \in L(M)$. Because $A_M = \{B, C\}$, we have that $w \in L(M) = \Lambda_B \cup \Lambda_C$. Thus there are two cases to consider:

- Suppose $w \in \Lambda_B$. By part (B) of our induction on Λ , we have $w \in X_{oe} \subseteq X_{eo} \cup X_{oe}$.
- Suppose $w \in \Lambda_{\mathsf{C}}$. By part (C) of our induction on Λ , we have $w \in X_{\mathsf{eo}} \subseteq X_{\mathsf{eo}} \cup X_{\mathsf{oe}}$.

 $(X_{eo} \cup X_{oe} \subseteq L(M))$ Suppose $w \in X_{eo} \cup X_{oe}$. Since $X_{eo} \cup X_{oe} \subseteq \{0,1\}^*$, we have that $w \in \{0,1\}^*$. Suppose, toward a contradiction, that $w \notin L(M)$. Because $w \notin L(M) = \Lambda_B \cup \Lambda_C$, and $w \in \{0,1\}^* = (\mathbf{alphabet} M)^* = \Lambda_A \cup \Lambda_B \cup \Lambda_C \cup \Lambda_D$, it follows that $w \in \Lambda_A \cup \Lambda_D$. Thus there are two cases to consider:

- Suppose $w \in \Lambda_A$. By part (A) of our induction on Λ , we have $w \in X_{ee}$. Thus **zeros** w and **ones** w are both even. Since **ones** w is even, we have $w \notin X_{ee}$. Since **zeros** w is even, we have $w \notin X_{ee}$. Thus $w \notin X_{ee} \cup X_{ee}$ —contradiction.
- Suppose $w \in \Lambda_D$. By part (D) of our induction on Λ , we have $w \in X_{oo}$. Thus **zeros** w and **ones** w are both odd. Since **zeros** w is odd, we have $w \notin X_{eo}$. Since **ones** w is odd, we have $w \notin X_{eo}$. Thus $w \notin X_{eo} \cup X_{oe}$ —contradiction.

Because we obtained a contradiction in both cases, we have an overall contradiction. Thus $w \in L(M)$.

Question 4

Suppose, toward a contradiction, that X is regular. Thus there is an $n \in \mathbb{N} - \{0\}$ with the property of the Pumping Lemma for Regular Languages, where X has been substituted for L. Let $z = 0^{2n}1^12^{2n}3^1$. Because 2n + 1 = 2n + 1, 2n is even, 1 is odd, 2n is even, and 1 is odd, we have that $z \in X$. And $|z| = 4n + 2 \ge n$. Thus the property of the pumping lemma tells us that there are $u, v, w \in \mathbf{Str}$ such that z = uvw and

- (1) $|uv| \leq n$; and
- (2) $v \neq \%$; and
- (3) $uv^iw \in X$, for all $i \in \mathbb{N}$.

Since $0^{2n}1^12^{2n}3^1 = z = uvw$, (1) tells us that uv consists of only 0's. Thus (2) tells us that $v = 0^p$ for some $p \ge 1$. Consequently, uw has: 2n - p occurrences of 0; 1 occurrence of 1; 2n occurrences of 2; and 1 occurrence of 3. Thus the sum of the numbers of occurrences of 0 and 1 in uw is (2n-p)+1=(2n+1)-p, whereas the sum of the numbers of occurrences of 2 and 3 in uw is 2n+1. But according to (3), $uw = uv^0w \in X$, with the consequence that (2n+1)-p=2n+1. But then p=0—contradiction. Thus X is not regular.

Question 5

First, we convert the regular expression $(0+1)^*$ generating $\{0,1\}^*$ into a DFA, **allStrDFA**. (We first convert it to an FA, then to an EFA, then to an NFA, and then to a DFA.) Then $L(\mathbf{allStrDFA}) = L((0+1)^*) = \{0,1\}^*$. Next, we concatenate α and β , calling the resulting regular expression λ . We then convert λ into a DFA, M. Thus $L(M) = L(\alpha)L(\beta)$. Let

$$Y = \{\, w \in \{0,1\}^* \mid \text{there are } x,y \in \{0,1\}^* \text{ such that } w = xy \text{ and } x \in L(\alpha) \text{ and } y \in L(\beta) \,\}.$$

It is easy to check that $L(M) = L(\alpha)L(\beta) = Y$. Next, let the DFA **ansDFA** = **minus**(**allStrDFA**, M). Then $L(\mathbf{ansDFA}) = \{0,1\}^* - Y = X$. Finally, we convert **ansDFA** into a regular expression, using our weak simplification function on regular expressions as the regular expression simplifier, producing γ . Hence $L(\gamma) = X$.