
CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 7

Model Answers

Problem 1

Let G be the grammar

A→% | 1 | 1A1A0 | AA

Let X be the least subset of {0, 1}∗ such that:

(1) % ∈ X ;

(2) 1 ∈ X ;

(3) for all x, y ∈ X , 1x1y0 ∈ X ;

(4) for all x, y ∈ X , xy ∈ X .

In Problem Set 2, we proved X = Y . Hence it will suffice to show that L(G) = X .

Lemma PS7.1.1

For all w ∈ ΠA, w ∈ X .

Proof. We proceed by induction on Π. There are four productions to consider.

(A→%) We must show that % ∈ X , and this follows by Rule (1) of X ’s definition.

(A→ 1) We must show that 1 ∈ X , and this follows by Rule (2) of X ’s definition.

(A→ 1A1A0) Suppose x, y ∈ ΠA, and assume the inductive hypothesis: x, y ∈ X . Then 1x1y0 ∈

X by Rule 3 of X ’s definition.

(A→ AA) Suppose x, y ∈ ΠA, and assume the inductive hypothesis: x, y ∈ X . Then xy ∈ X by

Rule 4 of X ’s definition.

✷

Lemma PS7.1.2

For all w ∈ X , w ∈ ΠA.

Proof. We proceed by induction on X . There are four steps to show.

(1) We must show that % ∈ ΠA. And this follows because of the production A→% of G.

(2) We must show that 1 ∈ ΠA. And this follows because of the production A→ 1 of G.

(3) Suppose x, y ∈ X , and assume the inductive hypothesis: x, y ∈ ΠA. We must show that

1x1y0 ∈ ΠA, and this follows because of the production A→ 1A1A0 and the inductive hypoth-

esis.

1

(4) Suppose x, y ∈ X , and assume the inductive hypothesis: x, y ∈ ΠA. We must show that

xy ∈ ΠA, and this follows because of the production A→ AA and the inductive hypothesis.

✷

Lemma PS7.1.1 tells us that L(G) = ΠA ⊆ X , and Lemma PS7.1.2 tells us that X ⊆ ΠA = L(G).

Thus L(G) = X .

Problem 2

First, we put the text

{variables} A, B, C, D {start variable} A

{productions}

A -> B | C | 0A3;

B -> D | 0B2;

C -> D | 1C3;

D -> % | 1D2

for a grammar generating { 0i1j2k3l | i, j, k, l ∈ N and i + j = k + l } in the file

ps7-p2-orig-gram.txt. Next we put the text

{states} A, B {start state} A {accepting states} A

{transitions}

A, 0 -> B; A, 1 -> A; A, 2 -> A; A, 3 -> A;

B, 0 -> A; B, 1 -> B; B, 2 -> B; B, 3 -> B

for a DFA accepting all elements of {0, 1, 2, 3}∗ with an even number of 0’s in the file

ps7-p2-even0s-dfa.txt. Then we load the grammar and DFA into Forlan:

- val origGram = Gram.input "ps7-p2-orig-gram.txt";

val origGram = - : gram

- val even0sDFA = DFA.input "ps7-p2-even0s-dfa.txt";

val even0sDFA = - : dfa

Next, we put the Forlan program

(* standard definitions *)

val regToDFA = nfaToDFA o efaToNFA o faToEFA o regToFA;

val minAndRen = DFA.renameStatesCanonically o DFA.minimize;

(* the alphabet {0, 1, 2, 3} *)

val syms0123 = SymSet.fromString "0, 1, 2, 3";

(* regular expression and DFA generating/accepting {0, 1, 2, 3}* *)

val allStrReg = Reg.closure(Reg.allSym syms0123);

val allStrDFA = minAndRen(regToDFA allStrReg);

2

(* symbolic relation on {0, 1, 2, 3} swapping 0 and 1 *)

val swap01 = SymRel.fromString "(0, 1), (1, 0), (2, 2), (3, 3)";

(* symbolic relation on {0, 1, 2, 3} swapping 0 and 2 *)

val swap02 = SymRel.fromString "(0, 2), (2, 0), (1, 1), (3, 3)";

(* symbolic relation on {0, 1, 2, 3} swapping 0 and 3 *)

val swap03 = SymRel.fromString "(0, 3), (3, 0), (1, 1), (2, 2)";

(* DFA accepting all elements of {0, 1, 2, 3}* with odd number of 1s *)

val odd1sDFA =

minAndRen

(DFA.minus

(allStrDFA,

DFA.renameAlphabet(even0sDFA, swap01)));

(* DFA accepting all elements of {0, 1, 2, 3}* with even number of 2s *)

val even2sDFA = DFA.renameAlphabet(even0sDFA, swap02);

(* DFA accepting all elements of {0, 1, 2, 3}* with odd number of 3s *)

val odd3sDFA =

minAndRen

(DFA.minus

(allStrDFA,

DFA.renameAlphabet(even0sDFA, swap03)));

(* DFA accepting all elements of {0, 1, 2, 3}* in which the

number of 0s is even and the number of 1s is odd and the

number of 2s is even and the number of 3s is odd *)

val paritiesDFA =

minAndRen

(DFA.genInter

[even0sDFA, odd1sDFA, even2sDFA, odd3sDFA]);

(* grammar generating X *)

val gram0 =

Gram.renameVariablesCanonically

(Gram.inter(origGram, injDFAToEFA paritiesDFA));

3

in the file ps7-p2-find.sml, and proceed as follows:

- use "ps7-p2-find.sml";

[opening ps7-p2-find.sml]

val regToDFA = fn : reg -> dfa

val minAndRen = fn : dfa -> dfa

val syms0123 = - : sym set

val allStrReg = - : reg

val allStrDFA = - : dfa

val swap01 = - : sym_rel

val swap02 = - : sym_rel

val swap03 = - : sym_rel

val odd1sDFA = - : dfa

val even2sDFA = - : dfa

val odd3sDFA = - : dfa

val paritiesDFA = - : dfa

val gram0 = - : gram

val it = () : unit

- Gram.output("", gram0);

{variables} A, B, C, D, E, F, G, H, I {start variable} A

{productions}

A -> B; B -> F | 0C3; C -> E | 0B3; D -> H | 0E2; E -> 0D2; F -> 1G3;

G -> I | 1F3; H -> 1I2; I -> % | 1H2

val it = () : unit

In the grammar gram0, there are opportunities for hand-simplification using Forlan. We put the

text

(* sumProdRHSLens : gram -> int

sum the lengths of the right-hand sides of a grammar’s

productions *)

fun sumProdRHSLens gram =

let fun sum nil = 0

| sum ((_, bs) :: ps) = length bs + sum ps

in sum(Set.toList(Gram.productions gram)) end

(* better : gram * gram -> bool

metric for gram1 being "better" than gram2 *)

fun better(gram1, gram2) =

let val nv1 = Gram.numVariables gram1

val nv2 = Gram.numVariables gram2

in nv1 < nv2 orelse

(nv1 = nv2 andalso

let val np1 = Gram.numProductions gram1

val np2 = Gram.numProductions gram2

4

in np1 < np2 orelse

(np1 = np2 andalso

let val n1 = sumProdRHSLens gram1

val n2 = sumProdRHSLens gram2

in n1 < n2 end)

end)

end;

(* best : gram * gram option list -> gram

best(gram, gramOpts) returns gram if none of the optional

grammars in gramOpts are better than gram; otherwise it returns

one of the optional grammars that is better than gram and

such that no other optional grammar is even better *)

fun best(gram, nil) = gram

| best(gram, NONE :: gramOpts) = best(gram, gramOpts)

| best(gram, SOME gram’ :: gramOpts) =

if better(gram’, gram)

then best(gram’, gramOpts)

else best(gram, gramOpts);

(* elims : gram -> gram

recursively eliminate variables of a grammar *)

fun elims gram =

let val qs =

SymSet.minus

(Gram.variables gram, Set.sing(Gram.startVariable gram))

val gramOpts =

map (fn q =>

case Gram.eliminateVariableOpt(gram, q) of

NONE => NONE

| SOME gram’ => SOME(elims gram’))

(Set.toList qs)

in best(gram, gramOpts) end;

(* handSimp : gram -> gram

hand-simplify a grammar *)

fun handSimp gram =

let val gram = elims gram

in case Gram.restartOpt gram of

NONE => gram

| SOME gram’ => gram’

end;

5

in the file ps7-p2-hand-simp.sml, and proceed as follows to obtain our answer, gram:

- use "ps7-p2-hand-simp.sml";

[opening ps7-p2-hand-simp.sml]

val sumProdRHSLens = fn : gram -> int

val better = fn : gram * gram -> bool

val best = fn : gram * gram option list -> gram

val elims = fn : gram -> gram

val handSimp = fn : gram -> gram

val it = () : unit

- val gram = Gram.renameVariablesCanonically(handSimp gram0);

val gram = - : gram

- Gram.output("", gram);

{variables} A, B, C, D {start variable} A

{productions}

A -> 0B3 | 1C3 | 00A33; B -> 00B22 | 01D22; C -> D | 11C33; D -> % | 11D22

val it = () : unit

- (Gram.numVariables gram, Gram.numProductions gram);

val it = (4,9) : int * int

Problem 3

Suppose, toward a contradiction, that X is context-free. Thus there is an n ∈ N − {0} with the

property of the Pumping Lemma for Context-free Languages, where X has been substituted for L.

Let z = 0
n
1
n+1

2
n+2. Since n < n+ 1 < n+ 2, we have that z ∈ X . Furthermore |z| = 3n+ 3 ≥ n,

and thus the property of the lemma tells us there are u, v, w, x, y ∈ Str such that z = uvwxy and

(1) |vwx| ≤ n; and

(2) vx 6= %; and

(3) uviwxiy ∈ X , for all i ∈ N.

Because 0
n
1
n+1

2
n+2 = z = uvwxy, we have that u, v, w, x, y ∈ {0, 1, 2}∗, and (1) tells us that vwx

does not have both 0’s and 2’s. There are four cases to consider:

(vx has one or more 0’s, and has one or more 1’s) Then vx has no 2’s. Let k be the number of 1’s

in vx, so that k ≥ 1. By (3), we have that uvvwxxy = uv2wx2y ∈ X . Since uvwxy has n+ 1

1’s and n+ 2 2’s, u(v)vwx(x)y has n+ 1+ k 1’s, and has n+ 2 2’s. But n+ 1+ k ≥ n+ 2, so

that uvvwxxy /∈ X—contradiction.

(vx has one or more 0’s, but has no 1’s) Let k be the number of 0’s in vx, so that k ≥ 1. By (3),

we have that uvvwxxy = uv2wx2y ∈ X . Since uvwxy has n 0’s and n + 1 1’s, u(v)vwx(x)y

has n+ k 0’s, and has n+ 1 1’s. But n+ k ≥ n+ 1, so that uvvwxxy /∈ X—contradiction.

(vx has no 0’s, but has one or more 1’s) Let k be the number of 1’s in vx, so that k ≥ 1. By (3),

we have that uwy = uv0wx0y ∈ X . Since u(v)w(x)y has n 0’s and n + 1 1’s, uwy has n 0’s,

and has n+ 1− k 1’s. But n ≥ n+ 1− k, so that uwy /∈ X—contradiction.

6

(vx has no 0’s, and has no 1’s) By (2), it follows that vx has one or more 2’s. Let k be the number

of 2’s in vx, so that k ≥ 1. By (3), we have that uwy = uv0wx0y ∈ X . Since u(v)w(x)y has

n+ 1 1’s and n+ 2 2’s, uwy has n + 1 1’s, and has n + 2 − k 2’s. But n+ 1 ≥ n+ 2 − k, so

that uwy /∈ X—contradiction.

Because we obtained a contradiction in each case, we have an overall contradiction. Thus X is not

context-free.

7

