
CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 6

Model Answers

Problem 1

Easy mathematical inductions show that for all n ∈ N, diff(1n) = n and diff(0n) = −2n.

Lemma PS6.1.1

For all n ∈ N, 12n0n ∈ Y .

Proof. Let X be the least subset of {0, 1}∗ such that:

(1) % ∈ X ;

(2) 1 ∈ X ;

(3) for all x, y ∈ X , 1x1y0 ∈ X ;

(4) for all x, y ∈ X , xy ∈ X .

In Problem Set 2, we proved X = Y . Consequently, it will suffice to show that, for all n ∈ N,

12n0n ∈ X . We proceed by mathematical induction.

• (basis step) We have that 12·000 = 1000 = %% = % ∈ X , by Rule (1) of X ’s definition.

• (inductive step) Suppose n ∈ N, and assume the inductive hypothesis: 12n0n ∈ X . Then

12(n+1)0n+1 = 12n+20n0 = 11+1+2n0n0 = 1112n0n0 = 1(%)1(12n0n)0 ∈ X , by Rule (3) of

X ’s definition, since % ∈ X (by Rule (1) of X ’s definition) and 12n0n ∈ X (by the inductive

hypothesis).

✷

Suppose, toward a contradiction, that Y is regular. Thus there is an n ∈ N − {0} with the

property of the Pumping Lemma, where Y has been substituted for L. Suppose z = 12n0n. By

Lemma PS6.1.1, we have that z ∈ Y . Thus, since |z| = 2n+n = 3n ≥ n, it follows there are u, v, w ∈

Str such that z = uvw and properties (1)–(3) of the lemma hold. Since uvw = z = 12n0n = 1n1n0n,

(1) tells us that there are i, j, k ∈ N such that

u = 1
i, v = 1

j, w = 1
k
1
n
0
n, i+ j + k = n.

By (2), we have that j ≥ 1, and thus that i + k = n − j < n. By (3), we have that 1i+k+n0n =

1i1k1n0n = uw = u%w = uv0w ∈ Y . Because 1i+k+n0n is a prefix of itself, we have that i+k−n =

i+ k+ n+−n+−n = (i+ k+n) +−2n = diff(1i+k+n) +diff(0n) = diff(1i+k+n0n) ≥ 0, and thus

that i+ k ≥ n. But since i+ k < n—contradiction. Thus Y is not regular.

1

Problem 2

A→ B〈3〉 | 〈0〉C,

B→ 0B2 | 〈1〉2〈2〉,

C→ 1C3 | 1〈1〉〈2〉,

〈0〉 →% | 0〈0〉,

〈1〉 →% | 1〈1〉,

〈2〉 →% | 2〈2〉,

〈3〉 →% | 3〈3〉

Problem 3

(a) First we give some standard definitions:

minAndRen = renameStatesCanonically ◦minimize,

efaToDFA = nfaToDFA ◦ efaToNFA,

strToEFA = faToEFA ◦ strToFA,

allStrEFA = closure(union(symToNFA 0, symToNFA 1)), and

allStrDFA = minAndRen(efaToDFAallStrEFA).

Thus minAndRen ∈ DFA → DFA, efaToDFA ∈ EFA → DFA, strToEFA ∈ Str → EFA,

allStrEFA ∈ EFA and allStrDFA ∈ DFA.

Next, we define hasSubEFA ∈ {0, 1}∗ →EFA by: for all x ∈ {0, 1}∗,

hasSubEFA x = concat(allStrDFA, concat(strToEFA x, allStrDFA)).

Define hasSubDFA ∈ {0, 1}∗ →DFA by:

hasSubDFA = minAndRen ◦ efaToDFA ◦ hasSubEFA.

Define hasNotSubDFA ∈ {0, 1}∗ →DFA by: for all x ∈ {0, 1}∗,

hasNotSubDFA x = minAndRen(minus(allStrDFA,hasSubDFA x)).

Define someUnmatchedEFA ∈ {0, 1}∗ × {0, 1}∗ →EFA by: for all x, y ∈ {0, 1}∗,

someUnmatchedEFA(x, y)

= concat(hasNotSubDFA y, concat(strToEFA x,hasNotSubDFA y)).

Define someUnmatchedDFA ∈ {0, 1}∗ × {0, 1}∗ →DFA by:

someUnmatchedDFA = minAndRen ◦ efaToDFA ◦ someUnmatchedEFA.

Define allMatchedDFA ∈ {0, 1}∗ × {0, 1}∗ →DFA by: for all x, y ∈ {0, 1}∗,

allMatchedDFA(x, y) = minAndRen(minus(allStrDFA, someUnmatchedDFA(x, y))).

2

Finally, define dcsDFA ∈ {0, 1}∗ × {0, 1}∗ →DFA by: for all x, y ∈ {0, 1}∗,

dcsDFA(x, y) = minAndRen(inter(allMatchedDFA(x, y), allMatchedDFA(y, x))).

(b) Our definition of dcsDFA is in the file ps6.sml:

val zero = Sym.fromString "0";

val one = Sym.fromString "1";

val minAndRen =

DFA.renameStatesCanonically o DFA.minimize;

val efaToDFA = nfaToDFA o efaToNFA;

val strToEFA = faToEFA o strToFA;

val allStrEFA =

EFA.closure

(EFA.union(injNFAToEFA(symToNFA zero), injNFAToEFA(symToNFA one)));

val allStrDFA = minAndRen(efaToDFA allStrEFA);

fun hasSubEFA x =

EFA.concat

(injDFAToEFA allStrDFA,

EFA.concat(strToEFA x, injDFAToEFA allStrDFA));

val hasSubDFA = minAndRen o efaToDFA o hasSubEFA;

fun hasNotSubDFA x = minAndRen(DFA.minus(allStrDFA, hasSubDFA x));

fun someUnmatchedEFA(x, y) =

EFA.concat

(injDFAToEFA(hasNotSubDFA y),

EFA.concat(strToEFA x, injDFAToEFA(hasNotSubDFA y)));

val someUnmatchedDFA = minAndRen o efaToDFA o someUnmatchedEFA;

fun allMatchedDFA(x, y) =

minAndRen(DFA.minus(allStrDFA, someUnmatchedDFA(x, y)));

fun dcsDFA(x, y) =

minAndRen(DFA.inter(allMatchedDFA(x, y), allMatchedDFA(y, x)));

We load it into Forlan:

- use "ps6.sml";

[opening ps6.sml]

val zero = - : sym

val one = - : sym

val minAndRen = fn : dfa -> dfa

val efaToDFA = fn : efa -> dfa

val strToEFA = fn : str -> efa

val allStrEFA = - : efa

3

val allStrDFA = - : dfa

val hasSubEFA = fn : str -> efa

val hasSubDFA = fn : str -> dfa

val hasNotSubDFA = fn : str -> dfa

val someUnmatchedEFA = fn : str * str -> efa

val someUnmatchedDFA = fn : str * str -> dfa

val allMatchedDFA = fn : str * str -> dfa

val dcsDFA = fn : str * str -> dfa

val it = () : unit

And then we execute:

- val dfa1 = dcsDFA(Str.fromString "11", Str.fromString "00");

val dfa1 = - : dfa

- DFA.numStates dfa1;

val it = 8 : int

- val dfa2 = dcsDFA(Str.fromString "011", Str.fromString "110");

val dfa2 = - : dfa

- DFA.numStates dfa2;

val it = 29 : int

(c) First, we note that, because renameStatesCanonically and minimize preserve the meaning

of DFAs, for all DFAs M ,

L(minAndRenM) = L(renameStatesCanonically(minimizeM))

= L(minimizeM) = L(M),

and thus minAndRenM ≈ M .

Lemma PS6.3.1

For all DFAs M , minimize(minAndRenM) is isomorphic to minAndRenM .

Proof. We have that minAndRenM = renameStatesCanonically(minimizeM) is isomor-

phic to minimizeM . Thus it will suffice to show that minimize(minAndRenM) is isomorphic

to minimizeM . By Theorem 3.13.12, it will suffice to show that

(1) minimize(minAndRenM) ≈ M ;

(2) alphabet(minimize(minAndRenM)) = alphabet(L(M)); and

(3) |Qminimize(minAndRenM)| ≤ |QminimizeM |.

For (1), we have that minimize(minAndRenM) ≈ minAndRenM ≈ M .

For (2), by Theorem 3.13.12, we have that

alphabet(minimize(minAndRenM)) = alphabet(L(minAndRenM)) = alphabet(L(M)).

For (3), by Theorem 3.13.12, we have that

|Qminimize(minAndRenM)| ≤ |QminAndRenM |

= |QrenameStatesCanonically(minimizeM)| = |QminimizeM |.

✷

4

Define HasSub ∈ {0, 1}∗ → P({0, 1}∗) by: for all x ∈ {0, 1}∗, HasSubx = {w ∈ {0, 1}∗ | x

is a substring of w }.

Clearly:

Lemma PS6.3.2

For all x ∈ {0, 1}∗, HasSubx = {0, 1}∗ {x} {0, 1}∗.

Lemma PS6.3.2 and easy calculations show:

Lemma PS6.3.3

(1) For all x ∈ {0, 1}∗, L(hasSubEFAx) = HasSubx.

(2) For all x ∈ {0, 1}∗, L(hasSubDFA x) = HasSubx.

Define HasNotSub ∈ {0, 1}∗ → P({0, 1}∗) by: for all x ∈ {0, 1}∗, HasNotSubx = {w ∈

{0, 1}∗ | x is not a substring of w }.

Because complementation corresponds to negation, we have:

Lemma PS6.3.4

For all x ∈ {0, 1}∗, HasNotSubx = {0, 1}∗ −HasSubx.

Lemmas PS6.3.3 and PS6.3.4, and an easy calculation show:

Lemma PS6.3.5

For all x ∈ {0, 1}∗, L(hasNotSubDFAx) = HasNotSubx.

Define SomeUnmatched ∈ {0, 1}∗ × {0, 1}∗ → P({0, 1}∗) by: for all x, y ∈ {0, 1}∗,

SomeUnmatched(x, y) is the set of all w ∈ {0, 1}∗ such that there are u, v ∈ {0, 1}∗ such that

w = uxv, y is not a substring of u, and y is not a substring of v.

It is easy to show:

Lemma PS6.3.6

For all x, y ∈ {0, 1}∗, SomeUnmatched(x, y) = HasNotSub y {x}HasNotSuby.

Lemmas PS6.3.5 and PS6.3.6, and easy calculations show:

Lemma PS6.3.7

(1) For all x, y ∈ {0, 1}∗, L(someUnmatchedEFA(x, y)) = SomeUnmatched(x, y).

(2) For all x, y ∈ {0, 1}∗, L(someUnmatchedDFA(x, y)) = SomeUnmatched(x, y).

Define AllMatched ∈ {0, 1}∗×{0, 1}∗→P({0, 1}∗) by: for all x, y ∈ {0, 1}∗, AllMatched(x, y)

is the set of all w ∈ {0, 1}∗ such that, for all u, v ∈ {0, 1}∗, if w = uxv, then y is a substring of u, or

y is a substring of v.

Lemma PS6.3.8

For all x, y ∈ {0, 1}∗, AllMatched(x, y) = {0, 1}∗ − SomeUnmatched(x, y).

Proof. Follows from the relationship between complementation and negation, since, if w ∈ {0, 1}∗,

then:

5

there do not exist u, v ∈ {0, 1}∗ such that w = uxv, and y is not a substring of u, and y

is not a substring of v

iff

for all u, v ∈ {0, 1}∗ it is not the case that: w = uxv, and y is not a substring of u, and

y is not a substring of v

iff

for all u, v ∈ {0, 1}∗, w 6= uxv, or y is a substring of u, or y is a substring of v

iff

for all u, v ∈ {0, 1}∗, w 6= uxv, or: y is a substring of u, or y is a substring of v

iff

for all u, v ∈ {0, 1}∗, if w = uxv, then y is a substring of u, or y is a substring of v.

✷

Lemmas PS6.3.7 and PS6.3.8, and an easy calculation show:

Lemma PS6.3.9

For all x, y ∈ {0, 1}∗, L(allMatchedDFA(x, y)) = AllMatched(x, y).

Because intersection corresponds to conjunction, we have:

Lemma PS6.3.10

For all x, y ∈ {0, 1}∗, DCS(x, y) = AllMatched(x, y) ∩AllMatched(y, x).

Lemmas PS6.3.9 and PS6.3.10, and an easy calculation, show:

Lemma PS6.3.11

For all x, y ∈ {0, 1}∗, L(dcsDFA(x, y)) = DCS(x, y).

Finally, Lemma PS6.3.1 tells us that:

Lemma PS6.3.12

For all x, y ∈ {0, 1}∗, minimize(dcsDFA(x, y)) is isomorphic to dcsDFA(x, y).

6

