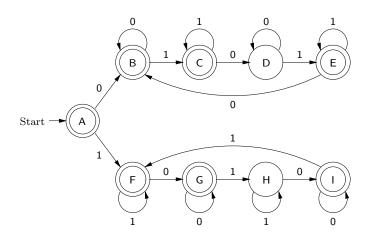
CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 5

Model Answers

Problem 1

(a)



(b) We have that, for all $w \in \{0, 1\}^*$:

- $w \in X$ iff **zo** w is even or **oz** w is even; and
- $w \notin X$ iff $\mathbf{zo} w$ is odd and $\mathbf{oz} w$ is odd.

Because **alphabet** $M = \{0, 1\}$, we have that $\Lambda_{M,q} \subseteq \{0, 1\}^*$ for all $q \in Q_M$.

Lemma PS5.1.1

- (A) For all $w \in \Lambda_A$, w = %.
- (B) For all $w \in \Lambda_B$, **zo** w is even, **oz** w is even and **0** is a suffix of w.
- (C) For all $w \in \Lambda_{\mathsf{C}}$, zo w is odd, oz w is even and 1 is a suffix of w.
- (D) For all $w \in \Lambda_{\mathsf{D}}$, **zo** w is odd, **oz** w is odd and **0** is a suffix of w.
- (E) For all $w \in \Lambda_{\mathsf{E}}$, **zo** w is even, **oz** w is odd and 1 is a suffix of w.
- (F) For all $w \in \Lambda_{\mathsf{F}}$, **zo** w is even, **oz** w is even and 1 is a suffix of w.
- (G) For all $w \in \Lambda_{\mathsf{G}}$, zo w is even, oz w is odd and 0 is a suffix of w.
- (H) For all $w \in \Lambda_{\mathsf{H}}$, **zo** w is odd, **oz** w is odd and 1 is a suffix of w.

(I) For all $w \in \Lambda_{I}$, **zo** w is odd, **oz** w is even and **0** is a suffix of w.

Proof. We proceed by induction on Λ . There are 19 parts to show.

- (empty string) We have that % = %.
- (A, 0 → B) Suppose w ∈ Λ_A and assume the inductive hypothesis, w = %. We have that zo(w0) = zo w = zo % = 0 is even, oz(w0) = 0 is even, and 0 is a suffix of w0.
- $(A, 1 \rightarrow F)$ Suppose $w \in \Lambda_A$ and assume the inductive hypothesis, w = %. We have that $\mathbf{zo}(w1) = 0$ is even, $\mathbf{oz}(w1) = \mathbf{oz} w = \mathbf{oz} \% = 0$ is even, and 1 is a suffix of w1.
- $(B, 0 \to B)$ Suppose $w \in \Lambda_B$ (so that $w \in \{0, 1\}^*$) and assume the inductive hypothesis, $\mathbf{zo} w$ is even, $\mathbf{oz} w$ is even and 0 is a suffix of w. We have that $\mathbf{zo}(w0) = \mathbf{zo} w$ is even, $\mathbf{oz}(w0) = \mathbf{oz} w$ is even, and 0 is a suffix of w0.
- $(B, 1 \rightarrow C)$ Suppose $w \in \Lambda_B$ and assume the inductive hypothesis, $\mathbf{zo} w$ is even, $\mathbf{oz} w$ is even and $\mathbf{0}$ is a suffix of w. We have that $\mathbf{zo}(w1) = \mathbf{zo} w + 1$ is odd, $\mathbf{oz}(w1) = \mathbf{oz} w$ is even, and $\mathbf{1}$ is a suffix of w1.
- $(C, 0 \rightarrow D)$ Suppose $w \in \Lambda_C$ and assume the inductive hypothesis, $\mathbf{zo} w$ is odd, $\mathbf{oz} w$ is even and 1 is a suffix of w. We have that $\mathbf{zo}(w0) = \mathbf{zo} w$ is odd, $\mathbf{oz}(w0) = \mathbf{oz} w + 1$ is odd, and 0 is a suffix of w0.
- $(\mathsf{C}, \mathsf{1} \to \mathsf{C})$ Suppose $w \in \Lambda_{\mathsf{C}}$ and assume the inductive hypothesis, $\mathbf{zo} w$ is odd, $\mathbf{oz} w$ is even and $\mathsf{1}$ is a suffix of w. We have that $\mathbf{zo}(w\mathsf{1}) = \mathbf{zo} w$ is odd, $\mathbf{oz}(w\mathsf{1}) = \mathbf{oz} w$ is even, and $\mathsf{1}$ is a suffix of $w\mathsf{1}$.
- $(D, 0 \rightarrow D)$ Suppose $w \in \Lambda_D$ and assume the inductive hypothesis, $\mathbf{zo} w$ is odd, $\mathbf{oz} w$ is odd and 0 is a suffix of w. We have that $\mathbf{zo}(w0) = \mathbf{zo} w$ is odd, $\mathbf{oz}(w0) = \mathbf{oz} w$ is odd, and 0 is a suffix of w0.
- $(D, 1 \rightarrow E)$ Suppose $w \in \Lambda_D$ and assume the inductive hypothesis, $\mathbf{zo} w$ is odd, $\mathbf{oz} w$ is odd and $\mathbf{0}$ is a suffix of w. We have that $\mathbf{zo}(w1) = \mathbf{zo} w + 1$ is even, and $\mathbf{oz}(w1) = \mathbf{oz} w$ is odd, and $\mathbf{1}$ is a suffix of w1.
- (E, 0 → B) Suppose w ∈ Λ_E and assume the inductive hypothesis, zo w is even, oz w is odd and 1 is a suffix of w. We have that zo(w0) = zo w is even, oz(w0) = oz(w0) + 1 is even, and 0 is a suffix of w0.
- $(\mathsf{E}, \mathsf{1} \to \mathsf{E})$ Suppose $w \in \Lambda_{\mathsf{E}}$ and assume the inductive hypothesis, $\mathbf{zo} w$ is even, $\mathbf{oz} w$ is odd and $\mathsf{1}$ is a suffix of w. We have that $\mathbf{zo}(w\mathsf{1}) = \mathbf{zo} w$ is even, $\mathbf{oz}(w\mathsf{1}) = \mathbf{oz} w$ is odd, and $\mathsf{1}$ is a suffix of $w\mathsf{1}$.
- $(\mathsf{F}, \mathsf{0} \to \mathsf{G})$ Suppose $w \in \Lambda_{\mathsf{F}}$ and assume the inductive hypothesis, $\mathbf{zo} w$ is even, $\mathbf{oz} w$ is even and 1 is a suffix of w. We have that $\mathbf{zo}(w0) = \mathbf{zo} w$ is even, $\mathbf{oz}(w0) = \mathbf{oz} w + 1$ is odd, and 0 is a suffix of w0.
- $(\mathsf{F}, 1 \to \mathsf{F})$ Suppose $w \in \Lambda_{\mathsf{F}}$ and assume the inductive hypothesis, $\mathbf{zo} w$ is even, $\mathbf{oz} w$ is even and 1 is a suffix of w. We have that $\mathbf{zo}(w1) = \mathbf{zo} w$ is even, $\mathbf{oz}(w1) = \mathbf{oz} w$ is even, and 1 is a suffix of w1.

- $(G, 0 \rightarrow G)$ Suppose $w \in \Lambda_G$ and assume the inductive hypothesis, $\mathbf{zo} w$ is even, $\mathbf{oz} w$ is odd and 0 is a suffix of w. We have that $\mathbf{zo}(w0) = \mathbf{zo} w$ is even, $\mathbf{oz}(w0) = \mathbf{oz} w$ is odd, and 0 is a suffix of w0.
- $(G, 1 \rightarrow H)$ Suppose $w \in \Lambda_G$ and assume the inductive hypothesis, $\mathbf{zo} w$ is even, $\mathbf{oz} w$ is odd and $\mathbf{0}$ is a suffix of w. We have that $\mathbf{zo}(w1) = \mathbf{zo} w + 1$ is odd, $\mathbf{oz}(w1) = \mathbf{oz} w$ is odd, and $\mathbf{1}$ is a suffix of w1.
- $(\mathsf{H}, \mathsf{0} \to \mathsf{I})$ Suppose $w \in \Lambda_{\mathsf{H}}$ and assume the inductive hypothesis, $\mathbf{zo} w$ is odd, $\mathbf{oz} w$ is odd and 1 is a suffix of w. We have that $\mathbf{zo}(w\mathbf{0}) = \mathbf{zo} w$ is odd, $\mathbf{oz}(w\mathbf{0}) = \mathbf{oz} w + 1$ is even, and 0 is a suffix of $w\mathbf{0}$.
- $(\mathsf{H}, 1 \to \mathsf{H})$ Suppose $w \in \Lambda_{\mathsf{H}}$ and assume the inductive hypothesis, $\mathbf{zo} w$ is odd, $\mathbf{oz} w$ is odd and 1 is a suffix of w. We have that $\mathbf{zo}(w1) = \mathbf{zo} w$ is odd, $\mathbf{oz}(w1) = \mathbf{oz} w$ is odd, and 1 is a suffix of w1.
- $(I, 0 \rightarrow I)$ Suppose $w \in \Lambda_I$ and assume the inductive hypothesis, $\mathbf{zo} w$ is odd, $\mathbf{oz} w$ is even and 0 is a suffix of w. We have that $\mathbf{zo}(w0) = \mathbf{zo} w$ is odd, $\mathbf{oz}(w0) = \mathbf{oz} w$ is even, and 0 is a suffix of w0.
- $(I, 1 \to F)$ Suppose $w \in \Lambda_I$ and assume the inductive hypothesis, $\mathbf{zo} w$ is odd, $\mathbf{oz} w$ is even and $\mathbf{0}$ is a suffix of w. We have that $\mathbf{zo}(w1) = \mathbf{zo} w + 1$ is even, $\mathbf{oz}(w1) = \mathbf{oz} w$ is even, and $\mathbf{1}$ is a suffix of w1.

Now, we use Lemma PS5.1.1 to prove that L(M) = X.

- $(L(M) \subseteq X)$ Suppose $w \in L(M)$. Hence $w \in L(M) = \bigcup \{\Lambda_q \mid q \in \{A, B, C, E, F, G, I\}\}$, so that $w \in \Lambda_q$ for some $q \in \{A, B, C, E, F, G, I\}$, and thus $w \in (alphabet M)^* = \{0, 1\}^*$. Thus, there are seven cases to consider.
 - Suppose q = A. Then $w \in \Lambda_A$, so that w = %, by Lemma PS5.1.1(A). Hence $\mathbf{zo} w = \mathbf{zo} \% = 0$ is even, so that $w \in X$.
 - Suppose q = B. Then $w \in \Lambda_B$, so that **zo** w is even, by Lemma PS5.1.1(B). Hence $w \in X$.
 - Suppose $q = \mathsf{C}$. Then $w \in \Lambda_{\mathsf{C}}$, so that $\mathbf{oz} w$ is even, by Lemma PS5.1.1(C). Hence $w \in X$.
 - Suppose $q = \mathsf{E}$. Then $w \in \Lambda_{\mathsf{E}}$, so that **zo** w is even, by Lemma PS5.1.1(E). Hence $w \in X$.
 - Suppose $q = \mathsf{F}$. Then $w \in \Lambda_{\mathsf{F}}$, so that **zo** w is even, by Lemma PS5.1.1(F). Hence $w \in X$.
 - Suppose $q = \mathsf{G}$. Then $w \in \Lambda_{\mathsf{G}}$, so that **zo** w is even, by Lemma PS5.1.1(G). Hence $w \in X$.
 - Suppose q = 1. Then $w \in \Lambda_1$, so that **oz** w is even, by Lemma PS5.1.1(I). Hence $w \in X$.
- $(X \subseteq L(M))$ Suppose $w \in X$. Since $X \subseteq \{0,1\}^*$, we have that $w \in \{0,1\}^*$. Suppose, toward a contradiction, that $w \notin L(M)$. Thus $w \notin L(M) = \bigcup \{\Lambda_q \mid q \in \{A, B, C, E, F, G, I\}\}$. But $w \in \{0,1\}^* = (\text{alphabet } M)^* = \bigcup \{\Lambda_q \mid q \in Q_M\}$, so that $w \in \Lambda_D \cup \Lambda_H$. Thus there are two cases to consider.

- Suppose $w \in \Lambda_{D}$. Thus **zo** w is odd and **oz** w is odd, by Lemma PS5.1.1(D). Hence $w \notin X$ —contradiction.
- Suppose $w \in \Lambda_{\mathsf{H}}$. Thus $\mathbf{zo} w$ is odd and $\mathbf{oz} w$ is odd, by Lemma PS5.1.1(H). Hence $w \notin X$ —contradiction.

Because we achieved a contradiction in both cases, we have an overall contradiction. Thus $w \in L(M)$.

Problem 2

First we put the Forlan description

```
{states} A, B {start state} A {accepting states} A {transitions}
A, 0 -> B; A, 1 -> A;
B, 0 -> B; B, 1 -> A
```

of N in the file ps5-p2-dfa and load it into Forlan:

```
- val dfa = DFA.input "ps5-p2-dfa";
val dfa = - : dfa
```

Then we proceed as follows, trying all permutations on states using both unrestricted local and global simplification as the simplification method, with tracing turned on:

```
- fun simpLoc reg = #2(Reg.locallySimplify (NONE, Reg.obviousSubset) reg);
val simpLoc = fn : reg -> reg
- fun simpGlob reg = #2(Reg.globallySimplify (NONE, Reg.obviousSubset) reg);
val simpGlob = fn : reg -> reg
- val reg1 = faToRegPermsTrace (NONE, simpLoc) (injDFAToFA dfa);
using renaming "(A, A), (B, B)"
found regular expression "1*(\% + 0(0 + 1)*1)"
simplest regular expression so far is "1*(\% + 0(0 + 1)*1)"
using renaming "(A, B), (B, A)"
found regular expression "\% + (0 + 1)*1"
simplest regular expression so far is "% + (0 + 1)*1"
val reg1 = - : reg
- Reg.output("", reg1);
% + (0 + 1)*1
val it = () : unit
- val reg2 = faToRegPermsTrace (NONE, simpGlob) (injDFAToFA dfa);
using renaming "(A, A), (B, B)"
found regular expression "1*(\% + 0(0 + 1)*1)"
simplest regular expression so far is "1*(\% + 0(0 + 1)*1)"
using renaming "(A, B), (B, A)"
found regular expression "\% + (0 + 1)*1"
simplest regular expression so far is "% + (0 + 1)*1"
val reg2 = - : reg
- Reg.output("", reg2);
```

% + (0 + 1)*1 val it = () : unit

Note that both simplification methods gave the same result: $\% + (0+1)^*1$.

Problem 3

We disprove the statement, showing that there exists a regular language L such that there is no reversible DFA M such that L(M) = L. Let $L = \{0\}$. We have that L is a regular language because L = L(0). We prove that there does not exist a reversible DFA M such that L(M) = L.

Suppose, toward a contradiction, that there is a reversible DFA M such that L(M) = L. Since $0 \in L = L(M)$, we have that $0 \in alphabet M$. Define $f \in \mathbb{N} \to Q_M$ by:

$$f n = \delta_M(s_M, \mathbf{0}^n).$$

Below, we write δ , s, A and T for δ_M , s_M , A_M and T_M , respectively.

We have that $f 0 = \delta(s, 0^0) = \delta(s, \%) = s$.

To see that, for all $n \in \mathbb{N}$, $(fn, 0, f(n+1)) \in T$, suppose $n \in \mathbb{N}$. We have $f(n+1) = \delta(s, 0^{n+1}) = \delta(s, 0^n 0) = \delta(\delta(s, 0^n), 0) = \delta(fn, 0)$, showing that $\delta(fn, 0) = f(n+1)$, and thus that $(fn, 0, f(n+1)) \in T$.

Since Q is finite, there are $i, j \in \mathbb{N}$ such that i < j but f = f j. Let $n \in \mathbb{N}$ be least that there is an $m \in \mathbb{N}$ such that m < n and f m = f n. Fix such an m. Then $n \ge 1$ and, (†) for all $i, j \in \mathbb{N}$, if i < j < n, then $f \neq f j$. There are two cases to consider.

- Suppose m = 0. Then $\delta(s, 0^{n+1}) = \delta(s, 0^n 0) = \delta(\delta(s, 0^n), 0) = \delta(f n, 0) = \delta(f m, 0) = \delta(f 0, 0) = \delta(s, 0) \in A$, since $0 \in L = L(M)$. Thus $0^{n+1} \in L(M) = L = \{0\}$, so that $0^{n+1} = 0 = 0^1$, and thus n + 1 = 1. But then n = 0, contradicting the fact that $n \ge 1$.
- Suppose $m \ge 1$. Thus $m-1 \in \mathbb{N}$. And $n-1 \in \mathbb{N}$, since $n \ge 1$. We have $(f(m-1), 0, f((m-1)+1)) \in T$, so that $(f(m-1), 0, fm) \in T$. We also have $(f(n-1), 0, f((n-1)+1)) \in T$, so that $(f(n-1), 0, fn) \in T$. But fn = fm, so that $(f(n-1), 0, fm) \in T$. Because (f(m-1), 0, fm) and (f(n-1), 0, fm) are in T and M is reversible, it follows that f(m-1) = f(n-1). But m-1 < n-1 < n, since m < n, and thus $f(m-1) \neq f(n-1)$ by (\dagger) —contradiction.

Since we obtained a contradiction in both cases, we have an overall contradiction. Thus there does not exist a reversible DFA M such that L(M) = L.