CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 5

Model Answers

Problem 1

(a)

(b) We have that, for all w € {0,1}*:
e w € X iff zow is even or oz w is even; and
e w ¢ X iff zow is odd and oz w is odd.
Because alphabet M = {0, 1}, we have that Ay, C {0,1}* for all ¢ € Q.

Lemma PS5.1.1
(A) For allw € Aa, w =%.

(B) For all w € Ag, zow is even, ozw is even and 0 is a suffix of w.
(C) For all w € Ac, zow is odd, ozw is even and 1 is a suffix of w.
(D) For all w € Ap, zow is odd, ozw is odd and 0 is a suffix of w.

(E) For all w € Ag, zow is even, ozw is odd and 1 is a suffix of w.
(F) For all w € Af, zow is even, ozw is even and 1 is a suffix of w.
(G) For all w € Ag, zow is even, ozw is odd and 0 is a suffix of w.

(H) For all w € An, zow is odd, ozw is odd and 1 is a suffix of w.



(I) For all w € Ay, zow is odd, ozw is even and 0 is a suffix of w.

Proof. We proceed by induction on A. There are 19 parts to show.

(empty string) We have that % = %.

(A,0 — B) Suppose w € Apx and assume the inductive hypothesis, w = %. We have that
zo(w0) = zow = 20 % = 0 is even, oz(w0) = 0 is even, and 0 is a suffix of wO0.

(A,;,1 —F) Suppose w € Aa and assume the inductive hypothesis, w = %. We have that
zo(wl) = 0 is even, oz(wl) = ozw = 0z % = 0 is even, and 1 is a suffix of wl.

(B,0—B) Suppose w € Ag (so that w € {0,1}*) and assume the inductive hypothesis, zo w
is even, oz w is even and 0 is a suffix of w. We have that zo(w0) = zow is even, oz(w0) = ozw
is even, and 0 is a suffix of w0.

(B,1— C) Suppose w € Ag and assume the inductive hypothesis, zo w is even, oz w is even
and 0 is a suffix of w. We have that zo(wl) = zow + 1 is odd, oz(wl) = oz w is even, and 1
is a suffix of wl.

(C,0—= D) Suppose w € Ac and assume the inductive hypothesis, zow is odd, ozw is even
and 1 is a suffix of w. We have that zo(w0) = zow is odd, oz(w0) = ozw + 1 is odd, and 0
is a suffix of w0.

(C,1—C) Suppose w € Ac and assume the inductive hypothesis, zow is odd, oz w is even
and 1 is a suffix of w. We have that zo(wl) = zow is odd, oz(wl) = ozw is even, and 1 is a
suffix of wl.

(D,0 — D) Suppose w € Ap and assume the inductive hypothesis, zow is odd, oz w is odd
and 0 is a suffix of w. We have that zo(w0) = zow is odd, 0z(w0) = oz w is odd, and 0 is a
suffix of wO.

(D,1 — E) Suppose w € Ap and assume the inductive hypothesis, zow is odd, oz w is odd
and 0 is a suffix of w. We have that zo(wl) = zow + 1 is even, and oz(wl) = oz w is odd,
and 1 is a suffix of wl.

(E,0 — B) Suppose w € Ag and assume the inductive hypothesis, zow is even, oz w is odd
and 1 is a suffix of w. We have that zo(w0) = zow is even, 0z(w0) = oz(w0) + 1 is even, and
0 is a suffix of w0.

(E,1 — E) Suppose w € Ag and assume the inductive hypothesis, zow is even, ozw is odd
and 1 is a suffix of w. We have that zo(wl) = zow is even, oz(wl) = ozw is odd, and 1 is a
suffix of wl.

(F,0— G) Suppose w € Af and assume the inductive hypothesis, zow is even, oz w is even
and 1 is a suffix of w. We have that zo(w0) = zow is even, oz(w0) = ozw + 1 is odd, and 0
is a suffix of w0.

(F,1—F) Suppose w € Ar and assume the inductive hypothesis, zo w is even, ozw is even
and 1 is a suffix of w. We have that zo(wl) = zow is even, oz(wl) = ozw is even, and 1 is a
suffix of wl.



(G,0 > G) Suppose w € Ag and assume the inductive hypothesis, zow is even, oz w is odd
and 0 is a suffix of w. We have that zo(w0) = zow is even, oz(w0) = ozw is odd, and 0 is a
suffix of w0.

(G,1 = H) Suppose w € Ag and assume the inductive hypothesis, zow is even, oz w is odd
and 0 is a suffix of w. We have that zo(wl) = zow + 1 is odd, oz(wl) = ozw is odd, and 1
is a suffix of wl.

(H,0 — 1) Suppose w € Ay and assume the inductive hypothesis, zow is odd, ozw is odd
and 1 is a suffix of w. We have that zo(w0) = zow is odd, 0z(w0) = ozw + 1 is even, and 0
is a suffix of w0.

(H,1—H) Suppose w € Ay and assume the inductive hypothesis, zow is odd, oz w is odd
and 1 is a suffix of w. We have that zo(wl) = zow is odd, oz(wl) = oz w is odd, and 1 is a
suffix of wl.

(I,0—1) Suppose w € Aj and assume the inductive hypothesis, zo w is odd, oz w is even and
0 is a suffix of w. We have that zo(w0) = zow is odd, 0z(w0) = ozw is even, and 0 is a suffix
of wO0.

(I,1 —F) Suppose w € A; and assume the inductive hypothesis, zow is odd, oz w is even
and 0 is a suffix of w. We have that zo(wl) = zow + 1 is even, oz(wl) = ozw is even, and 1
is a suffix of wl.

Now, we use Lemma PS5.1.1 to prove that L(M) = X.

(L(M) C X) Suppose w € L(M). Hence w € L(M) = J{Aq | ¢ € {A,B,C,E,F,G,1}}, so
that w € A, for some ¢ € {A,B,C,E,F,G,l}, and thus w € (alphabet M)* = {0,1}*. Thus,
there are seven cases to consider.

— Suppose ¢ = A. Then w € Aa, so that w = %, by Lemma PS5.1.1(A). Hence zow =
z0 % = 0 is even, so that w € X.

— Suppose ¢ = B. Then w € Ag, so that zow is even, by Lemma PS5.1.1(B). Hence w € X.

— Suppose ¢ = C. Then w € Ac, so that oz w is even, by Lemma PS5.1.1(C). Hence w € X.

Hence w € X.

(B).
(©).
— Suppose ¢ = E. Then w € Ag, so that zo w is even, by Lemma PS5.1.1(E). Hence w € X.
— Suppose ¢ = F. Then w € Af, so that zow is even, by Lemma PS5.1.1(F).
(G).

— Suppose g = G. Then w € Ag, so that zow is even, by Lemma PS5.1.1(G). Hence w € X.

— Suppose ¢ = I. Then w € Ay, so that ozw is even, by Lemma PS5.1.1(I). Hence w € X.

(X € L(M)) Suppose w € X. Since X C {0,1}*, we have that w € {0,1}*. Suppose, toward
a contradiction, that w ¢ L(M). Thus w ¢ L(M) = U{Aq; | ¢ € {A,B,C,E,F,G,1}}. But
w € {0,1}* = (alphabet M)* = |J{ Ay | ¢ € Qum }, so that w € Ap U Ay. Thus there are two
cases to consider.



— Suppose w € Ap. Thus zow is odd and ozw is odd, by Lemma PS5.1.1(D). Hence
w ¢ X—contradiction.

— Suppose w € Ay. Thus zow is odd and ozw is odd, by Lemma PS5.1.1(H). Hence
w ¢ X—contradiction.

Because we achieved a contradiction in both cases, we have an overall contradiction. Thus
w e L(M).

Problem 2

First we put the Forlan description

{states} A, B {start state} A {accepting states} A
{transitions}

A, 0O ->B; A, 1 > A;

B, 0->B; B, 1 > A

of N in the file ps5-p2-dfa and load it into Forlan:

- val dfa = DFA.input "psb5-p2-dfa";
val dfa = - : dfa

Then we proceed as follows, trying all permutations on states using both unrestricted local and
global simplification as the simplification method, with tracing turned on:

- fun simpLoc reg = #2(Reg.locallySimplify (NONE, Reg.obviousSubset) reg);
val simpLoc = fn : reg -> reg

- fun simpGlob reg = #2(Reg.globallySimplify (NONE, Reg.obviousSubset) reg);
val simpGlob = fn : reg -> reg

- val regl = faToRegPermsTrace (NONE, simpLoc) (injDFAToFA dfa);
using renaming "(A, A), (B, B)"

found regular expression "1*(), + 0(0 + 1)*1)"

simplest regular expression so far is "1*(J, + 0(0 + 1)*1)"

using renaming "(A, B), (B, A)"

found regular expression "j + (0 + 1)*1"

simplest regular expression so far is "J + (0 + 1)*1"

val regl = - : reg

- Reg.output("", regl);

%+ (0 + 1)*1

val it = () : unit

- val reg2 = faToRegPermsTrace (NONE, simpGlob) (injDFAToFA dfa);
using renaming "(A, A), (B, B)"

found regular expression "1x(J, + 0(0 + 1)*1)"

simplest regular expression so far is "1x(} + 0(0 + 1)*1)"

using renaming "(A, B), (B, A)"

found regular expression "J, + (0 + 1)*1"

simplest regular expression so far is "JJ + (0 + 1)*1"

val reg2 = - : reg

- Reg.output("", reg2);



%+ (0 + 1)*1
val it = () : unit

Note that both simplification methods gave the same result: % + (0 + 1)*1.

Problem 3

We disprove the statement, showing that there exists a regular language L such that there is no
reversible DFA M such that L(M) = L. Let L = {0}. We have that L is a regular language because
L = L(0). We prove that there does not exist a reversible DFA M such that L(M) = L.

Suppose, toward a contradiction, that there is a reversible DFA M such that L(M) = L. Since
0 € L =L(M), we have that 0 € alphabet M. Define f € N — Qu by:

fn=20nm(sm,0m).

Below, we write 6, s, A and T for dps, spr, Ay and Ty, respectively.

We have that f0 = §(s,0°) = d(s, %) = s.

To see that, for all n € N, (fn,0,f(n+ 1)) € T, suppose n € N. We have f(n + 1) =
§(s,0m+) = §(s,00) = 6(8(s,0™),0) = 5(f n,0), showing that 6(fn,0) = f(n + 1), and thus that
(fn,0,f(n+1))eT.

Since @ is finite, there are i,j € N such that ¢ < j but fi = fj. Let n € N be least that there
is an m € N such that m < n and fm = fn. Fix such an m. Then n > 1 and, (}) for all i,j € N, if
1 < j<mn,then fi# fj. There are two cases to consider.

e Suppose m = 0. Then §(s,0"*!) = §(s,0"0) = 6(5(s,0"),0) = §(fn,0) = §(fm,0) =
5(f0,0) = 6(s,0) € A, since 0 € L = L(M). Thus 0! € L(M) = L = {0}, so that
0"+l = 0= 0%, and thus n + 1 = 1. But then n = 0, contradicting the fact that n > 1.

e Supposem > 1. Thusm—1 € N. Andn—1 € N, since n > 1. We have (f(m—1),0, f((m—1)+
1)) € T, so that (f(m —1),0, fm) € T. We also have (f(n—1),0, f((n—1)+1)) € T, so that
(f(n—=1),0, fn) € T. But fn= fm,sothat (f(n—1),0, fm) € T. Because (f(m—1),0, fm)
and (f(n—1),0,fm) are in T and M is reversible, it follows that f(m — 1) = f(n —1). But
m—1<n—1<n,since m < n, and thus f(m — 1) # f(n — 1) by (f)—contradiction.

Since we obtained a contradiction in both cases, we have an overall contradiction. Thus there does
not exist a reversible DFA M such that L(M) = L.



