
CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 5

Model Answers
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(b) We have that, for all w ∈ {0, 1}∗:

• w ∈ X iff zow is even or ozw is even; and

• w 6∈ X iff zow is odd and ozw is odd.

Because alphabetM = {0, 1}, we have that ΛM,q ⊆ {0, 1}∗ for all q ∈ QM .

Lemma PS5.1.1

(A) For all w ∈ ΛA, w = %.

(B) For all w ∈ ΛB, zow is even, ozw is even and 0 is a suffix of w.

(C) For all w ∈ ΛC, zow is odd, ozw is even and 1 is a suffix of w.

(D) For all w ∈ ΛD, zow is odd, ozw is odd and 0 is a suffix of w.

(E) For all w ∈ ΛE, zow is even, ozw is odd and 1 is a suffix of w.

(F) For all w ∈ ΛF, zow is even, ozw is even and 1 is a suffix of w.

(G) For all w ∈ ΛG, zow is even, ozw is odd and 0 is a suffix of w.

(H) For all w ∈ ΛH, zow is odd, ozw is odd and 1 is a suffix of w.
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(I) For all w ∈ ΛI, zow is odd, ozw is even and 0 is a suffix of w.

Proof. We proceed by induction on Λ. There are 19 parts to show.

• (empty string) We have that % = %.

• (A, 0 → B) Suppose w ∈ ΛA and assume the inductive hypothesis, w = %. We have that

zo(w0) = zow = zo% = 0 is even, oz(w0) = 0 is even, and 0 is a suffix of w0.

• (A, 1 → F) Suppose w ∈ ΛA and assume the inductive hypothesis, w = %. We have that

zo(w1) = 0 is even, oz(w1) = ozw = oz% = 0 is even, and 1 is a suffix of w1.

• (B, 0→ B) Suppose w ∈ ΛB (so that w ∈ {0, 1}∗) and assume the inductive hypothesis, zow

is even, ozw is even and 0 is a suffix of w. We have that zo(w0) = zow is even, oz(w0) = ozw

is even, and 0 is a suffix of w0.

• (B, 1→ C) Suppose w ∈ ΛB and assume the inductive hypothesis, zow is even, ozw is even

and 0 is a suffix of w. We have that zo(w1) = zow + 1 is odd, oz(w1) = ozw is even, and 1

is a suffix of w1.

• (C, 0→ D) Suppose w ∈ ΛC and assume the inductive hypothesis, zow is odd, ozw is even

and 1 is a suffix of w. We have that zo(w0) = zow is odd, oz(w0) = ozw + 1 is odd, and 0

is a suffix of w0.

• (C, 1→ C) Suppose w ∈ ΛC and assume the inductive hypothesis, zow is odd, ozw is even

and 1 is a suffix of w. We have that zo(w1) = zow is odd, oz(w1) = ozw is even, and 1 is a

suffix of w1.

• (D, 0→ D) Suppose w ∈ ΛD and assume the inductive hypothesis, zow is odd, ozw is odd

and 0 is a suffix of w. We have that zo(w0) = zow is odd, oz(w0) = ozw is odd, and 0 is a

suffix of w0.

• (D, 1→ E) Suppose w ∈ ΛD and assume the inductive hypothesis, zow is odd, ozw is odd

and 0 is a suffix of w. We have that zo(w1) = zow + 1 is even, and oz(w1) = ozw is odd,

and 1 is a suffix of w1.

• (E, 0→ B) Suppose w ∈ ΛE and assume the inductive hypothesis, zow is even, ozw is odd

and 1 is a suffix of w. We have that zo(w0) = zow is even, oz(w0) = oz(w0) + 1 is even, and

0 is a suffix of w0.

• (E, 1→ E) Suppose w ∈ ΛE and assume the inductive hypothesis, zow is even, ozw is odd

and 1 is a suffix of w. We have that zo(w1) = zow is even, oz(w1) = ozw is odd, and 1 is a

suffix of w1.

• (F, 0→ G) Suppose w ∈ ΛF and assume the inductive hypothesis, zow is even, ozw is even

and 1 is a suffix of w. We have that zo(w0) = zow is even, oz(w0) = ozw + 1 is odd, and 0

is a suffix of w0.

• (F, 1→ F) Suppose w ∈ ΛF and assume the inductive hypothesis, zow is even, ozw is even

and 1 is a suffix of w. We have that zo(w1) = zow is even, oz(w1) = ozw is even, and 1 is a

suffix of w1.

2



• (G, 0→ G) Suppose w ∈ ΛG and assume the inductive hypothesis, zow is even, ozw is odd

and 0 is a suffix of w. We have that zo(w0) = zow is even, oz(w0) = ozw is odd, and 0 is a

suffix of w0.

• (G, 1→ H) Suppose w ∈ ΛG and assume the inductive hypothesis, zow is even, ozw is odd

and 0 is a suffix of w. We have that zo(w1) = zow + 1 is odd, oz(w1) = ozw is odd, and 1

is a suffix of w1.

• (H, 0 → I) Suppose w ∈ ΛH and assume the inductive hypothesis, zow is odd, ozw is odd

and 1 is a suffix of w. We have that zo(w0) = zow is odd, oz(w0) = ozw + 1 is even, and 0

is a suffix of w0.

• (H, 1→ H) Suppose w ∈ ΛH and assume the inductive hypothesis, zow is odd, ozw is odd

and 1 is a suffix of w. We have that zo(w1) = zow is odd, oz(w1) = ozw is odd, and 1 is a

suffix of w1.

• (I, 0→ I) Suppose w ∈ ΛI and assume the inductive hypothesis, zow is odd, ozw is even and

0 is a suffix of w. We have that zo(w0) = zow is odd, oz(w0) = ozw is even, and 0 is a suffix

of w0.

• (I, 1 → F) Suppose w ∈ ΛI and assume the inductive hypothesis, zow is odd, ozw is even

and 0 is a suffix of w. We have that zo(w1) = zow + 1 is even, oz(w1) = ozw is even, and 1

is a suffix of w1.

✷

Now, we use Lemma PS5.1.1 to prove that L(M) = X .

• (L(M) ⊆ X) Suppose w ∈ L(M). Hence w ∈ L(M) =
⋃
{Λq | q ∈ {A,B,C,E,F,G, I} }, so

that w ∈ Λq for some q ∈ {A,B,C,E,F,G, I}, and thus w ∈ (alphabetM)∗ = {0, 1}∗. Thus,

there are seven cases to consider.

– Suppose q = A. Then w ∈ ΛA, so that w = %, by Lemma PS5.1.1(A). Hence zow =

zo% = 0 is even, so that w ∈ X .

– Suppose q = B. Then w ∈ ΛB, so that zow is even, by Lemma PS5.1.1(B). Hence w ∈ X .

– Suppose q = C. Then w ∈ ΛC, so that ozw is even, by Lemma PS5.1.1(C). Hence w ∈ X .

– Suppose q = E. Then w ∈ ΛE, so that zow is even, by Lemma PS5.1.1(E). Hence w ∈ X .

– Suppose q = F. Then w ∈ ΛF, so that zow is even, by Lemma PS5.1.1(F). Hence w ∈ X .

– Suppose q = G. Then w ∈ ΛG, so that zow is even, by Lemma PS5.1.1(G). Hence w ∈ X .

– Suppose q = I. Then w ∈ ΛI, so that ozw is even, by Lemma PS5.1.1(I). Hence w ∈ X .

• (X ⊆ L(M)) Suppose w ∈ X . Since X ⊆ {0, 1}∗, we have that w ∈ {0, 1}∗. Suppose, toward

a contradiction, that w 6∈ L(M). Thus w 6∈ L(M) =
⋃
{Λq | q ∈ {A,B,C,E,F,G, I} }. But

w ∈ {0, 1}∗ = (alphabetM)∗ =
⋃
{Λq | q ∈ QM }, so that w ∈ ΛD ∪ ΛH. Thus there are two

cases to consider.
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– Suppose w ∈ ΛD. Thus zow is odd and ozw is odd, by Lemma PS5.1.1(D). Hence

w 6∈ X—contradiction.

– Suppose w ∈ ΛH. Thus zow is odd and ozw is odd, by Lemma PS5.1.1(H). Hence

w 6∈ X—contradiction.

Because we achieved a contradiction in both cases, we have an overall contradiction. Thus

w ∈ L(M).

Problem 2

First we put the Forlan description

{states} A, B {start state} A {accepting states} A

{transitions}

A, 0 -> B; A, 1 -> A;

B, 0 -> B; B, 1 -> A

of N in the file ps5-p2-dfa and load it into Forlan:

- val dfa = DFA.input "ps5-p2-dfa";

val dfa = - : dfa

Then we proceed as follows, trying all permutations on states using both unrestricted local and

global simplification as the simplification method, with tracing turned on:

- fun simpLoc reg = #2(Reg.locallySimplify (NONE, Reg.obviousSubset) reg);

val simpLoc = fn : reg -> reg

- fun simpGlob reg = #2(Reg.globallySimplify (NONE, Reg.obviousSubset) reg);

val simpGlob = fn : reg -> reg

- val reg1 = faToRegPermsTrace (NONE, simpLoc) (injDFAToFA dfa);

using renaming "(A, A), (B, B)"

found regular expression "1*(% + 0(0 + 1)*1)"

simplest regular expression so far is "1*(% + 0(0 + 1)*1)"

using renaming "(A, B), (B, A)"

found regular expression "% + (0 + 1)*1"

simplest regular expression so far is "% + (0 + 1)*1"

val reg1 = - : reg

- Reg.output("", reg1);

% + (0 + 1)*1

val it = () : unit

- val reg2 = faToRegPermsTrace (NONE, simpGlob) (injDFAToFA dfa);

using renaming "(A, A), (B, B)"

found regular expression "1*(% + 0(0 + 1)*1)"

simplest regular expression so far is "1*(% + 0(0 + 1)*1)"

using renaming "(A, B), (B, A)"

found regular expression "% + (0 + 1)*1"

simplest regular expression so far is "% + (0 + 1)*1"

val reg2 = - : reg

- Reg.output("", reg2);
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% + (0 + 1)*1

val it = () : unit

Note that both simplification methods gave the same result: % + (0 + 1)∗1.

Problem 3

We disprove the statement, showing that there exists a regular language L such that there is no

reversible DFA M such that L(M) = L. Let L = {0}. We have that L is a regular language because

L = L(0). We prove that there does not exist a reversible DFA M such that L(M) = L.

Suppose, toward a contradiction, that there is a reversible DFA M such that L(M) = L. Since

0 ∈ L = L(M), we have that 0 ∈ alphabetM . Define f ∈ N→QM by:

f n = δM (sM , 0n).

Below, we write δ, s, A and T for δM , sM , AM and TM , respectively.

We have that f 0 = δ(s, 00) = δ(s,%) = s.

To see that, for all n ∈ N, (f n, 0, f(n + 1)) ∈ T , suppose n ∈ N. We have f(n + 1) =

δ(s, 0n+1) = δ(s, 0n0) = δ(δ(s, 0n), 0) = δ(f n, 0), showing that δ(f n, 0) = f(n + 1), and thus that

(f n, 0, f(n+ 1)) ∈ T .

Since Q is finite, there are i, j ∈ N such that i < j but f i = f j. Let n ∈ N be least that there

is an m ∈ N such that m < n and f m = f n. Fix such an m. Then n ≥ 1 and, (†) for all i, j ∈ N, if

i < j < n, then f i 6= f j. There are two cases to consider.

• Suppose m = 0. Then δ(s, 0n+1) = δ(s, 0n0) = δ(δ(s, 0n), 0) = δ(f n, 0) = δ(f m, 0) =

δ(f 0, 0) = δ(s, 0) ∈ A, since 0 ∈ L = L(M). Thus 0n+1 ∈ L(M) = L = {0}, so that

0n+1 = 0 = 01, and thus n+ 1 = 1. But then n = 0, contradicting the fact that n ≥ 1.

• Suppose m ≥ 1. Thusm−1 ∈ N. And n−1 ∈ N, since n ≥ 1. We have (f(m−1), 0, f((m−1)+

1)) ∈ T , so that (f(m− 1), 0, f m) ∈ T . We also have (f(n− 1), 0, f((n− 1)+ 1)) ∈ T , so that

(f(n−1), 0, f n) ∈ T . But f n = f m, so that (f(n−1), 0, f m) ∈ T . Because (f(m−1), 0, f m)

and (f(n − 1), 0, f m) are in T and M is reversible, it follows that f(m− 1) = f(n− 1). But

m− 1 < n− 1 < n, since m < n, and thus f(m− 1) 6= f(n− 1) by (†)—contradiction.

Since we obtained a contradiction in both cases, we have an overall contradiction. Thus there does

not exist a reversible DFA M such that L(M) = L.
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