The Semantics of CML (From Appendix B of
Reppy’s Book)

In these slides, we present the syntax and most of the dynamic
semantics of a subset of CML.

There are some bugs in what follows.

B.1: Notation
We write A\ Bfor {x € A|x & B }.

. i . .
We write A — B for the set of all finite maps from A to B, i.e.,
the set of all finite partial functions from A to B.

If fc A™ B, then

dom(f)
rng(f)

x| f(x) is defined },
f(z) | & € dom(f) }.

{
{

If A’ C A, A’ is finite and b € B, then {A’ — b} € A ™2 B is the
constantly b map whose domain is A’.

If f and g are finite maps, then f + g is the finite map with
domain dom(f) Udom(g) such that, for all z € dom(f)Udom(g),

(f + g)(z) = g(x) ifx € dom(g),

f(x) otherwise.

B.2: Syntax of Mini-CML

x € Var

b € Const = BConst U FConst
BConst = {(), true, false,0,1,...}
FConst = {+, —, fst, snd, ...}

variables
constants
base constants

function constants

FConst includes alwaysEvt, channel, choose, guard, neverEvt,

recvEvt, sendEvt, wrap and withNack.

B.2: Surface Syntax

The surface syntax of Mini-CML is defined by:

e =T
b
(€1, e2)
fnxr=ce

(€1 €2)

let x = e1 In ey

spawn €

sync e

variables

constants

pairs

function abstraction
function application
let binding

process creation

synchronization

B.2: Internal Syntax

To give the internal syntax of Mini-CML, we need:

k € Ch channel names

v € Cond condition (event) names

B.2: Internal Syntax (Cont.)

We form the internal syntax by extending the surface syntax:

€1 = €9
N e
e1 D es

€1|€2

channel name

condition event

receive event

send event

wrap event

guarded event function with nack
event choice

abort wrapper

never event

B.2: Values

(U17U2)
mhz=c¢
N

€V

B.2: Event Values

B.2: Syntactic Classes

e € Exp expressions
v € Val C Exp values

ev € Event C Val event values

B.3: Dynamic Semantics

JC C Ch—finite sets of channels.

fi . .
C C Cond — {true, false}—state of a collection of condition
events.

Each Mini-CML process has a unique process identifier
7 € Procld.

fi
P € Procld — Exp—state of a set of processes.

Configuration C, IC, P—state of a Mini-CML computation.

10

B.3: Four Reduction Relations

Concurrent Evaluation:

C,K,P=C,K' P.
Rendezvous Projection:

C,Pw— (P ,P")/A,

where P’ C P, dom(P’) = dom(P"”), and A C Cond is a finite
set of negative acknowledgment conditions.

Event-matching Relations:
CF (evy,...,evg) ~g (e1,...,ex)/A.
Sequential Evaluation:

C,K,e—C' K e

11

B.3: Evaluation Contexts

Order of evaluation is specified using evaluation contexts:

FE =

let xr =FEine
spawn E
sync

E|y

Ele] means replace || in E by e.

12

B.3.1: Concurrent Evaluation

C,K,e—=C' K¢ 7 & dom(P)
C,K,PU{(m e)}=C K PU{{mre)}

7w & dom(P) 7’ & dom(P) w#£ 7

C,K,PU{(m, Elspawnv|)} = C,IC,P U {(m, E]()]), (7', v())}

C,P— (P, P")JA C'=CE£{A— true}
C,K,P=C,K,(P\P)UP"

13

B.3.2: Rendezvous Projection

p1 = (71, E1[sync evq]) pr = (T, Ex[sync evg])
CF (evy,...,evg) ~g (e1,...,ex)/A
CiApt, -kt — ({1, o} (1, Euledl), - (mk, Exlex)))/ A

C,P+— (P, P")JA P CP"
C’ 7)/// — (7)/77)//)/.,4

14

B.3.3: Event Matching

CF (k!v,k?) ~o ((),v)/0)

C(vy) = true
Chry~1()/0

Nack conditions:

nack(evl D evo (6111) U nack(evg),
nack(ev = v) = nack(ev)

) =
) =

nack(ev | v) = nack(ev) U {~v},
)

nack(ev) = (), otherwise

15

B.3.3: Event Matching (Cont.)

CtE(evy,...,evg) ~p (€1,...,e5)/A
CF(evy ®ev,..., evg) ~p (e1,...,ex)/ AUnack(ev’)

CFE (evy,...,evg) ~p (e1,...,ex)/A
CF (ev) @ evy,...,evg) ~g (e1,...,ex)/AUnack(ev’)

CF (evy,...,evg) ~g (e1,...,ex)/A
CF (er = foorevn) ~x (fer),. . ne) /A

CF (evy,...,evg) ~g (e1,...,ex)/A
Ck(evi|7,...,evg) ~p (€1, .., ex) /A

C’I—(evl,...,evk)«»k(61,...,ek)/A {’L]|1§Z]§k}

C = (evil,...,evik) ad’ (eil,...,eik)/A

16

B.3.4: Sequential Evaluation

C,K,Ebv] — C,K, E[§(b,v)],
C,K,E[(fnx = e)v] — C,K, Elelr — v]],
C,K,Ellet t =vine| — C, K, Fle[x — v]],
C,K, FlalwaysEvt v] — C + {y +— true}, K, E[y = (fn () = v)],
C, K, Elchannel()| — C,K U{k}, FE[x],
C,K, E[sync(Nv)| — C £+ {v — false}, K, E[sync(v7)],

where v ¢ dom(C) and k & K.

6 € FConst x Val — Val

17

B.3.4: Sequential Evaluation (Cont.)

5(fSt, (’Ul,’Ug)) = U1,

d(neverEvt, ()) = A,
d(recvEvt, k) = K7,

d(sendEvt, (k,v)) =k !v

d(guard,v) = N(fn a = v()),
d(withNack,v) = N(fna = (va|a)),

18

B.3.4: Sequential Evaluation (Cont.)

d(wrap, (Nwvy,v2)) = N(fn a = wrap(vy a,v2)),

d(wrap, (ev,v)) = ev = v, otherwise

d(choose, (N vy, N vg

N(fn a; = N(fn as = choose(vi a1, v2a2))),
d(choose, (N v, ev

N(fn a = choose(va, ev)),
d(choose, (ev, Nwv

N(fn a = choose(ev,va)),

)
)
)
d(choose, (evy, eva)) = evy @ eva, otherwise

19

Execution Traces

A trace T is a (possibly infinite) sequence of well-formed configurations
1 = <<C()7 lCO? 7)07 Cl7 IC17 7)17 . >>

such that C;, IC;, P; = Ci_|_1, ’Ci—l—la 7)¢+1 (fOI’ 1 < n, if T is finite with
length n).

The head of T is CQ,]Co,Po.

20

Process States

Let C, IC, P be a well-formed configuration, and let (w,e) € P. The
state of m in P is either zombie, blocked, stuck or ready, depending
upon the form of e:

e if e = [v], then 7 is a zombie;

e if ¢ = F[sync ev] and there does not exist a set of processes
U(mis Eilsync evi]) | 1 <i <k} CPA\{(me);

such that C - (ev, evy, ..., evg) ~pa1 (€',e1,...,ex) \ A, then 7
is blocked;

e if there is no sequential configuration C, IC, ¢’ such that
C,KKC,e — C,IC, e, then 7 is stuck;

e otherwise, 7 is ready.

21

Ready Processes

We define the set of ready processes in C, IC, P by

Rdy(C,IC,P) ={n | misready inC,KC, P }.

A configuration C, IC, P is terminal iff Rdy(P) = ().

A terminal configuration with blocked processes is said to be
deadlocked.

22

Computations

A trace is a computation iff it is maximal, i.e., it is infinite, or it is
finite and ends in a terminal configuration.

If e is a program, then we define the computations of e to be

Comp(e) = {T | T is a computation with head (),), {(mg,€e)} }.

The set of processes of a trace T is defined as

Procs(T) ={n | 3C;, K;, P; € T with 7 € dom(F;) }.

23

Fairness

The synchronization objects of an event value ev are defined as

SyncObj(klv) = {k},
SyncObj(k?) =
SyncObj(y) =
SyncObj(A) =
SyncObj(ev, @ evq) = SyncObJ(evl) U SyncObj(evs),
SyncObj(ev = v) = SyncObj(ev),

SyncObj(ev | v) = SyncObj(ev).

We say that a synchronization object ~ is used in a synchronization iff
it is the synchronization object of the chosen base event for some
process involved in the synchronization.

24

Fairness (Cont.)

A synchronization object v is enabled in a configuration C, IC, P iff
there are k processes (m;, F;[sync ev;]) € P for 1 <14 < k, such that
Y € SyncObj(evq) and

Ck (evy,...,evg) ~g (e1,...,ex) \ A.

A computation 1’ is acceptable iff it ends in a terminal configuration,
or if T" satisfies the following fairness constraints:

(1) Any process that is ready infinitely often is selected infinitely
often.

(2) Any synchronization object that is enabled infinitely often is
used infinitely often.

An implementation of CML should prohibit the possibility of
unacceptable computations. In practice this requires that an
implementation satisfy some stronger property on finite traces.

25

