
More Event Combinators

CML provides two more event combinators: guard and withNack:

val guard : (unit -> ’a event) -> ’a event

val withNack : (unit event -> ’a event) -> ’a event

Each time an event involving guard f is synchronized on, guard f is

replaced by f(), which is then processed further.

guard may be used, e.g., to generate a fresh reply channel each time

an event is synchronized on.

1



More Event Combinators (Cont.)

val guard : (unit -> ’a event) -> ’a event

val withNack : (unit event -> ’a event) -> ’a event

Each time an event involving withNack f is synchronized on,

withNack f is replaced by f nev , which is then processed further,

where nev is a fresh negative acknowledgment unit event that will

become enabled if some event other than f nev is selected in the

synchronization.

For example, if choose[ev , withNack f ] is synchronized on, but ev is

eventually selected, then the negative acknowledgment event nev

passed to f will become enabled, indicating that any operation begun

by f nev should be aborted.

The guard functions of guard’s and withNack’s should run quickly; in

particular, they shouldn’t block.

2



More Event Combinators (Cont.)

val guard : (unit -> ’a event) -> ’a event

val withNack : (unit event -> ’a event) -> ’a event

Each time an event involving withNack f is synchronized on,

withNack f is replaced by f nev , which is then processed further,

where nev is a fresh negative acknowledgment unit event that will

become enabled if some event other than f nev is selected in the

synchronization.

For example, if choose[ev , withNack f ] is synchronized on, but ev is

eventually selected, then the negative acknowledgment event nev

passed to f will become enabled, indicating that any operation begun

by f nev should be aborted.

The guard functions of guard’s and withNack’s should run quickly; in

particular, they shouldn’t block.

2-a


